2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Звуковой пъезоизлучатель своими руками

Звуковой пъезоизлучатель своими руками

Исполнительное устройство активной сигнализации

Данное устройство предназначено только для демонстрационных испытаний в лабораторных условиях. Предприятие не несет ответственности за любое использование данного устройства.

Ограниченный сдерживающий эффект достигается воздействием мощного ультразвукового излучения. При сильных интенсивностях, ультразвуковые колебания производят чрезвычайно неприятный, раздражающий и болезненный эффект на большинство людей, вызывая сильные головные боли, дезориентацию, внутричерепные боли, паранойю, тошноту, расстройство желудка, ощущение полного дискомфорта.

Генератор ультразвуковой частоты выполнен на D2. Мультивибратор D1 формирует сигнал треугольной формы, управляющий качанием частоты D2. Частота модуляции 6-9 Гц лежит в области резонансов внутренних органов.

D1, D2 — КР1006ВИ1; VD1, VD2 — КД209; VT1 — KT3107; VT2 — KT827; VT3 — KT805; R12 — 10 Ом;

T1 выполнен на ферритовом кольце М1500НМЗ 28х16х9, обмотки n1, n2 содержат по 50 витков D 0.5.

Отключить излучатель; отсоединить резистор R10 от конденсатора C1; подстроечным резистором R9 выставить на выв. 3 D2 частоту 17-20 кГц. Резистором R8 установить требуемую частоту модуляции (выв. 3 D1). Частоту модуляции можно уменьшить до 1 Гц, увеличив емкость конденсатора С4 до 10 мкФ; Подсоединить R10 к С1; Подключить излучатель. Транзистор VT2 (VT3) устанавливают на мощный радиатор.

В качестве излучателя лучше всего применить специализированную пьезокерамическую головку ВА импортного или отечественного производства, обеспечивающую при номинальном напряжении питания 12 В уровень звуковой интенсивности 110 дБ: Можно использовать несколько мощных высокочастотных динамических головок (динамиков) ВА1. BAN, соединенных параллельно. Для выбора головки, исходя из требуемой интенсивности ультразвука и расстояния действия, предлагается следующая методика.

Средняя подводимая к динамику электрическая мощность Рср = Е2 / 2R, Вт, не должна превышать максимальной (паспортной) мощности головки Рmaх, Вт; Е — амплитуда сигнала на головке (меандр), В; R — электрическое сопротивление головки, Ом. При этом эффективно подводимая электрическая мощность на излучение первой гармоники Р1 = 0.4 Рср, Вт; звуковое давление Рзв1 = SдP11/2/d, Па; d — расстояние от центра головки, м; Sд = S0 • 10(LSд/20) Па Вт-1/2; LSд — уровень характеристической чувствительности головки (паспортное значение), дБ; S0 = 2 • 10-5 Па Вт-1/2. В результате, интенсивность звука I = Npзв12 / 2sv, Вт/м2; N — число параллельно соединенных головок, s = 1.293 кг/м3 — плотность воздуха; v = 331 м/с — скорость звука в воздухе. Уровень интенсивности звука L1 = 10 lg (I/I0), дБ, I0 = 10-12 I m/м2.

Уровень болевого порога считается равным 120 дБ, разрыв барабанной перепонки наступает при уровне интенсивности 150 дБ, разрушение уха при 160 дБ <180 дБ прожигает бумагу). Аналогичные зарубежные изделия излучают ультразвук с уровнем 105-130 дБ на расстоянии 1 м.

При использовании динамических головок дли получения требуемого уровня интенсивности может потребоваться увеличить напряжение питания. При соответствующем радиаторе (игольчатый с габаритной площадью 2 дм2) транзистор KT827 (металлический корпус) допускает параллельное включение восьми динамических головок с сопротивлением катушки 8 0м каждая. 3ГДВ-1; 6ГДВ-4; 10ГИ-1-8.

Разные люди переносят ультразвук по разному. Наиболее чувствительны к ультразвуку люди молодого возраста. Дело вкуса, если вместо ультразвука вы предпочтете мощное звуковое излучение. Для этого необходимо увеличить емкость С2 в десять раз. При желании можно отключить модуляцию частоты, отсоединив R10 от С1.

С ростом частоты эффективность излучения некоторых типов современных пьезоизлучателей резко увеличивается. При непрерывной работе более 10 минут, возможен перегрев и разрушение пьезокристалла. Поэтому рекомендуется выбирать напряжение питания ниже номинального. Необходимый уровень звуковой интенсивности достигается включением нескольких излучателей.

Ультразвуковые излучатели обладают узкой диаграммой направленности. При использовании исполнительного устройства для охраны помещений большого объема излучатель нацеливают в направление предполагаемого вторжения.

Взято с http://patlah.ru/etm/etm-11/e-shokeri/e-shokeri/e-shok-09.html

© «Энциклопедия Технологий и Методик» Патлах В.В. 1993-2007 гг.

Пьезокерамические излучатели звука (звонки, оповещатели)

В данной статье даётся представление об особенностях техники пьезокерамических электроакустических преобразователей, приводятся примеры серийно выпускаемых и разрабатываемых излучателей звука – звонков, оповещателей, сирен, рассматриваются особенности электронных схем с пьезокерамическими излучателями звука. Большей частью материал статьи составлен на основе личного опыта автора по разработке устройств с использованием пьезокерамики и ориентирован, главным образом, на инженеров по радиоэлектронике, имеющих дело с источниками звука или желающих «краем глаза» заглянуть в смежное направление техники.

Читать еще:  Детские зимние тапки из меха

Как с помощью пьезокерамики получить звук

Вообще, пьезокерамика неблагодарная субстанция, для того, чтобы свои колебания сообщить воздушной среде. Проиллюстрируем это на таком примере. Пусть в пьезокерамическом образце возбуждена стоячая волна. Она характеризуется некоторым значением звукового давления и амплитудой смещения частиц при колебаниях. Поставим вопрос. Как отличаются амплитуды колебаний частиц в керамике и в воздухе при равных там и там звуковых давлениях? Ответ: в 75 тысяч раз. Причина в том, что произведение плотности воздуха на скорость звука в воздухе в 75 тысяч раз меньше, чем аналогичное произведение для керамики. Доля излучения по мощности ещё меньше – одна семидесятипятитысячная в квадрате! Иное дело, передача звука в воду. Её плотность в тысячу раз больше и скорость звука в пять раз больше, чем у воздуха. Поэтому техника гидроакустики и техника воздушной акустики имеют мало общего.

Несмотря на такую пессимистическую предпосылку с помощью пьезокерамики удаётся получать значительные показатели по громкости. Отдельные образцы пьезокерамических преобразователей могут развивать звуковое давление на расстоянии 1м до 130дБ. Как ощутить эту цифру? Это болевой порог. Абсолютное значение звукового давления, соответствующего 130дБ – это 60 н/м 2 или 6 кГ/м 2 . Такой звук давит на барабанную перепонку с силой, примерно 0,2Г.

Кто не знает, что такое биметаллическая пластина? Две спечённые металлические пластины с различными коэффициентами линейного расширения при нагревании изгибаются на величину, многократно превышающую термическое удлинение. А если бы одна из пластин удлинялась, а другая пластина укорачивалась. Необходимым элементом электроакустического преобразователя с применением пьезокерамики является биморфная конструкция из двух тонких пьезоэлементов, из которых один при подаче напряжения растягивается, а другой сжимается. Чаще всего между пьезоэлементами вклеивается третий элемент – металлическая мембрана. Металл придаёт прочность конструкции. Ещё чаще бывает достаточно использовать один пьезоэлемент, а в качестве второго элемента биморфа служит сама мембрана (см. рис.1). Такие конструкции называют Биморфными пьезоэлементами или пьезоблоками.

Их обычные размеры 10 – 60 мм в диаметре и 0,2 – 1,5 мм по толщине. При этом диаметр пьезоэлемента обычно в 1,5 – 2 раза меньше диаметра мембраны. При подаче на пьезоэлемент напряжения его диаметр, в зависимости от полярности, либо увеличивается, либо уменьшается. Порядок изменения диаметра составляет 0,05 мкм на каждые 10В напряжения. Однако, вследствие изгиба, края мембраны приподнимутся или опустятся на 20мкм. Таким образом, малое расширение пьезоэлемента мы преобразовали в 400 раз большее изгибное смещение на краю мембраны. Вот уже упомянутое число 75000 превратилось В 187! Но двинемся дальше. Теперь нужно использовать явление резонанса. Ведь при резонансе амплитуда возрастает в число раз, равное добротности. Обычное значение добротности пьезоблока равно 50 – 70 единиц, и теперь пресловутые 75000 превращаются в обыкновенную тройку. Казалось бы задача решена, но не тут то было! Несмотря на большую амплитуду пьезоблок не звучит. Он не излучает звук. Маленький пьезоблок совсем не слышно. Пьезоблок большего размера слышно, но слабо. В чём кроется причина? Обратимся к рис.2, на котором схематично изображены две фазы колебаний круглого биморфного элемента. Точками а отмечена окружность нулевой амплитуды – узловая окружность.

На краю и в центре элемента Амплитуда максимальна, но колебательное движение происходит в противофазе. Для каждой фазы колебаний образуются три пары областей разрежения-сжатия воздуха. Поскольку размер пьезоблока меньше длины волны звука (для частоты 2 – 3кГц длина волны 110 – 170мм) области разрежения и сжатия не могут гнать волну дальше, а в течение половины периода успевают попарно «схлопнуться» и давление всё время вокруг выравнивается. Пути выравнивания давления показаны двусторонними стрелками. Это явление называют акустическим коротким замыканием.

Чтобы наше устройство зазвучало необходимо устранить акустическое короткое замыкание. Эта задача отнюдь не является сложной и придумано немало способов, которые успешно себя зарекомендовали на практике. От того, какой способ применён, зависит конструктивное исполнение и внешние очертания устройства. Далее познакомимся со способами устранения акустического короткого замыкания на конкретных примерах.

Читать еще:  Проблема крепления вытяжки

Также используется иное название – пьезозуммер. Пьезокерамический звонок ЗП-1 состоит из двух пьезоблоков, причём у каждого из них мембрана выполнена в форме неглубокой тарелки с внешним диаметром 32мм. Тарелки сложены встречно и пропаяны по внешней границе. Не будем приводить чертёж этой конструкции, так как она достаточно понятно иллюстрируется на фотографии, рис.3. Пьезоэлементы в этом звонке скоммутированы таким образом, что при подаче переменного напряжения поверхности тарелок либо сходятся, либо расходятся, а линия спая остаётся неподвижной. С обеих сторон звонка образуются зоны только сжатия или только разрежения. Зона с избыточным давлением противоположного знака надёжно изолирована во внутренней полости. Резонансная частота этого звонка 2кГц. Он создаёт звуковое давление 75дБ на расстоянии 1м при напряжении на резонансной частоте 10В. Этот звонок излучает звуковые волны одинаково в оба полупространства.

Здесь необходимо сделать отступление и условиться о терминах, характеризующих описываемые устройства. Технические характеристики, обычно приводимые в нормативных документах на продукцию, не вполне показательны, так как нормы на параметры часто значительно занижены по сравнению с фактическими значениями и не привязаны к единой методике измерения. Здесь и далее будем указывать фактические средние значения резонансной частоты и звукового давления, измеренного на расстоянии 1м и при напряжении 10В на резонансной частоте. При этом величину звукового давления всегда можно привести к другому напряжению, имея ввиду их линейную зависимость. Например, увеличение или уменьшение напряжения в два раза увеличивает или уменьшает звуковое давление также в два раза или, в децибелах, на 6дБ. Для большинства пьезокерамических излучателей линейная зависимость звукового давления от напряжения находится в интервале от 0 до 20-30В. Далее прирост звукового давления уменьшается.

Следующий простой способ избавиться от акустического короткого замыкания – это навесить на периферийную часть мембраны достаточно массивную оправку. Она будет выполнять роль противовеса и, в результате, узловая окружность увеличится в диаметре, приблизившись к внешней границе. Тогда, при колебаниях, вблизи поверхности мембраны будет доминировать или сжатие, или разрежение. Зона с избыточным давлением противоположного знака заглушена задней стенкой. Ниже, в таблице 1, приведены параметры звонков этой группы, а на рис.4 – их фотографии.

Как сделать магнитострикционный излучатель своими руками: описание, схема и рекомендации

Для генерации ультразвука применяются специальные излучатели магнитострикционного типа. К основным параметрам устройств относится сопротивление и проводимость. Также учитывается допустимая величина частоты. По конструкции устройства могут отличаться. Также надо отметить, что модели активно применяются в эхолотах. Чтобы разобраться в излучателях, важно рассмотреть их схему.

Схема устройства

Стандартный магнитострикционный излучатель ультразвука состоит из подставки и набора клемм. Непосредственно магнит подводится на конденсатор. В верхней части устройства имеется обмотка. У основания излучателей часто устанавливается зажимное кольцо. Магнит подходит только неодимового типа. В верхней части моделей располагается стержень. Для его фиксации применяется кольцо.

Кольцевая модификация

Кольцевые устройства работают при проводимости от 4 мк. Многие модели производятся с короткими подставками. Также надо отметить, что существуют модификации на полевых конденсаторах. Чтобы собрать магнитострикционный излучатель своими руками, применяется обмотка соленоида. При этом клеммы важно устанавливать низкого порогового напряжения. Ферритовый стрежень целесообразнее подбирать небольшого диаметра. Зажимное кольцо ставится в последнюю очередь.

Устройство с яром

Сделать магнитострикционный излучатель своими руками довольно просто. В первую очередь заготавливается стойка под стержень. Далее важно вырезать подставку. Для этого можно использовать металлический диск. Специалисты говорят о том, что подставка в диаметре должна быть не более 3.5 см. Клеммы для устройства подбираются на 20 В. В верхней части модели фиксируется кольцо. При необходимости можно намотать изоленту. Показатель сопротивления у излучателей данного типа находится в районе 30 Ом. Работают они при проводимости не менее 5 мк. Обмотка в данном случае не потребуется.

Модель с двойной обмоткой

Устройства с двойной обмоткой производятся разного диаметра. Проводимость у моделей находится на отметке 4 мк. Большинство устройств обладает высоким волновым сопротивлением. Чтобы сделать магнитострикционный излучатель своими руками, используется только стальная подставка. Изолятор в данном случае не потребуется. Ферритовый стержень разрешается устанавливать на подкладку. Специалисты рекомендуют заранее заготовить уплотнительное кольцо. Также надо отметить, что для сборки излучателя потребуется конденсатор полевого типа. Сопротивление на входе у модели должно составлять не более 20 Ом. Обмотки устанавливаются рядом со стержнем.

Читать еще:  Дворники с подогревом

Излучатели на базе отражателя

Излучатели данного типа выделяются высокой проводимостью. Работают модели при напряжении 35 В. Многие устройства оснащаются полевыми конденсаторами. Сделать магнитострикционный излучатель своими руками довольно проблематично. В первую очередь надо подобрать стержень небольшого диаметра. При этом клеммы заготавливаются с проводимостью от 4 мк.

Волновое сопротивление в устройстве должно составлять от 45 Ом. Пластина устанавливается на подставке. Обмотка в данном случае не должна соприкасаться с клеммами. В нижней части устройства обязана находиться круглая подставка. Для фиксации кольца часто применяется обычная изолента. Конденсатор напаивается над манганитом. Также надо отметить, что кольца иногда применяются с накладками.

Устройства для эхолотов

Для эхолотов часто используется магнитострикционный излучатель УЗ. Как приготовить модель своими руками? Самодельные модификации производятся с проводимостью от 5 мк. Волновое сопротивление у них в среднем равняется 55 Ом. Чтобы изготовить мощный ультразвуковой генератор своими руками, стержень применяется на 1.5 см. Обмотка соленоида накручивается с малым шагом.

Специалисты говорят о том, что стойки под излучатели целесообразнее подбирать из нержавейки. При этом клеммы применяются с малой проводимостью. Конденсаторы подходят разного типа. Предельное напряжение у излучателей находится на отметке 14 Вт. Для фиксации стержня используются резиновые кольца. У основания устройства накручивается изолента. Также стоит отметить, что магнит надо устанавливать в последнюю очередь.

Модификации для рыболокаторов

Устройства для рыболокаторов собираются только с проводными конденсаторами. Для начала требуется установить стойку. Целесообразнее применять кольца диаметром от 4.5 см. Обмотка соленоида обязана плотно прилегать к стержню. Довольно часто конденсаторы припаиваются у основания излучателей. Некоторые модификации производятся на две клеммы. Ферритовый стрежень обязан фиксироваться на изоляторе. Для укрепления кольца используется изолента.

Модели низкого волнового сопротивления

Устройства низкого волнового сопротивления работают при напряжении 12 В. У многих моделей имеются два конденсатора. Чтобы собрать прибор, генерирующий ультразвук, своими руками, потребуется стержень на 10 см. При этом конденсаторы на излучатель устанавливаются проводного типа. Обмотка накручивается в последнюю очередь. Также надо отметить, что для сборки модификации потребуется клемма. В некоторых случаях используются полевые конденсаторы на 4 мк. Параметр частоты будет довольно высокий. Магнит целесообразнее устанавливаться над клеммой.

Устройства высокого волнового сопротивления

Излучатели ультразвука высокого сопротивления хорошо подходят для приемников короткой волны. Собрать самостоятельно устройство можно только на базе переходных конденсаторов. При этом клеммы побираются высокой проводимости. Довольно часто магнит устанавливается на стойке.

Подставка для излучателя применяется малой высоты. Также надо отметить, что для сборки устройства используются один стрежень. Для изоляции его основания подойдет обычная изолента. В верней части излучателя обязано находиться кольцо.

Стержневые устройства

Схема ультразвукового излучателя стержневого типа включает в себя проводник с обмоткой. Конденсаторы разрешается применять разной емкости. При этом они могут отличаться по проводимости. Если рассматривать простую модель, то подставка заготавливается круглой формы, а клеммы устанавливаются на 10 В. Обмотка соленоида накручивается в последнюю очередь. Также надо отметить, что магнит подбирается неодимового типа.

Непосредственно стержень применяется на 2.2 см. Клеммы можно устанавливать на подкладке. Также надо упомянуть о том, что существуют модификации на 12 В. Если рассматривать устройства с полевыми конденсаторами высокой емкости, то минимальный диаметр стержня допускается 2.5 см. При этом обмотка должна накручиваться до изоляции. В верхней части излучателя устанавливается защитное кольцо. Подставки разрешается делать без накладки.

Модели с однопереходными конденсаторами

Излучатели данного типа выдают проводимость на уровне 5 мк. При этом показатель волнового сопротивления у них максимум доходит до 45 Ом. Для того чтобы самостоятельно изготовить излучатель, заготавливается небольшая стойка. В верхней части подставки обязана находиться накладка из резины. Также надо отметить, что магнит заготавливается неодимового типа.

Специалисты советуют устанавливать его на клей. Клеммы для устройства подбираются на 20 Вт. Непосредственно конденсатор устанавливается над накладкой. Стержень используется диаметром в 3.3 см. В нижней части обмотки должно находиться кольцо. Если рассматривать модели на два конденсатора, то стержень разрешается использовать с диаметром 3.5 см. Обмотка должна накручиваться до самого основания излучателя. В нижней части стоки клеится изолента. Магнит устанавливается в середине стойки. Клеммы при этом должны находиться по сторонам.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector