1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Самодельный супер яркий мини LED-фонарик 3 Вт своими руками

Самодельный супер яркий мини LED-фонарик 3 Вт своими руками

Как правило, от электрических фонарей желательно получить максимальную яркость свечения. Однако иногда требуется освещение, которое минимально нарушит адаптацию зрения к темноте. Как известно, человеческий глаз может менять свою светочувствительность в довольно широких пределах. Это позволяет с одной стороны видеть в сумерках и при плохом освещении, а с другой стороны не ослепнуть в яркий солнечный день. Если ночью выйти из хорошо освещенного помещения на улицу, то первые мгновения почти ничего не будет видно, но постепенного глаза приспособятся к новым условиям. Полная адаптация зрения к темноте занимает около одного часа, после нее глаз достигает максимальной чувствительности, которая в 200 тыс. раз выше дневной. В таких условиях даже кратковременное воздействие яркого света (включение карманного фонаря, фары автомобиля) сильно снижает чувствительность глаз. Однако даже при полной адаптации к темноте бывает необходимо, к примеру, прочитать карту, подсветить шкалу прибора и тому подобное, а для этого требуется искусственное освещение. Поэтому любителям астрономии, а также всем кому необходимо рассмотреть, что-то в условиях плохого освещения требуется не яркий фонарь.

При изготовлении астрономического фонаря не следует стремиться к излишней миниатюризации. Корпус астрономического фонаря должен быть светлым и достаточно крупным, так что бы в условиях плохого освещения его можно было легко найти (иначе уронишь под ноги и будешь фонарик полчаса искать). В качестве корпуса использована дорожная мыльницы. Выключатели должны быть такими, что бы их было легко использовать на ощупь и в перчатках.

Глаз максимально чувствителен к свету с длинной волны 550 нм (зеленый свет), а в темноте максимум чувствительности глаза смещается в сторону коротких волн до 510 нм (эффект Пуркинье). По этому в астрономическом фонаре предпочтительно использовать красные светодиоды, а не синие, или тем более зеленые. К красному свету чувствительность глаз меньше, а значит красное освещение меньше нарушит адаптацию к темноте.

Астрономический световой маячок

Кроме основного фонаря можно изготовить несколько простых маячков для подсветки различных предметов. Дело в том, что мало кто из любителей астрономии может позволить себе иметь полноценную любительскую обсерваторию. Большинство наблюдает с балкона. А в тесном пространстве, да еще и в темноте легко можно зацепить ногой и завалить штатив телескопа или фотоаппарата. Кроме этого неожиданно встретится в темноте коленом с углом какого-нибудь ящика или тумбочки, то же удовольствие небольшое. Поэтому целесообразно использовать простейшие мини фонарики для подсветки ножек штатива, острых углов мебели, полочки с принадлежностями и так далее. В принципе для этой цели подойдет просто светодиод, закрепленный липкой лентой на 3 В элементе питания типа 2032 или подобном. Но, во первых, без токоограничительного резистора свечение светодиода слишком яркое, во вторых даже в самом простом фонарике желательно иметь выключатель. Руководствуясь этими соображениями, было изготовлено несколько таких маячков.

В качестве выключателя использован геркон в паре с магнитом. Крепление 3 В элемента питания самодельное. Последовательно со светодиодом включается токоограничительный резистор, его номинал надо подбирать так, что бы в темноте при прямом взгляде на линзу светодиода свет не слепил глаза даже с близкого расстояния. В разных маячках можно использовать светодиоды разных цветов, для облегчения опознавания, при этом, помня, что к свету с разной длиной волны глаз имеет не одинаковую чувствительность. Можно применить мигающие светодиоды.

В дополнении еще пара конструкций простых LED фонарей. Конкретно описанные ниже конструкции для астрономических целей не предназначались, но они легко могут быть адаптированы, для подобного использования.

Простой водонепроницаемый фонарик

Простой водонепроницаемый фонарик можно сделать на основе баночки от фотопленки. Нам понадобится: новая баночка от фотопленки, светодиод 3 В, 2-3 геркона, литиевая батарейка 3 В типоразмера 2032, вата (наполнитель корпуса), колодка для батарейки от старого фонарика. Для обеспечения водонепроницаемости надо, чтобы в корпусе фонарика не было отверстий. Так что в качестве выключателя, можно использовать герметизированные контакты. Для надежного срабатывания лучше взять 2-3 геркона, так как при повороте вдоль продольной оси чувствительность геркона изменяется. Итак, собираем фонарик по схеме.

Сгибаем провода так, чтобы все поместилось в корпусе, пустое пространство я заполнил ватой, чтобы ничего не болталось. Помещаем схему в корпус. Важно, чтобы баночка от фотопленки была новой, т.е. чтобы крышка закрывалась максимально плотно. В качестве выключателя подойдет любой магнит. Фонарик данной конструкции продолжал работать после 10 часового пребывания в воде. Вата осталась сухой. Так, что длительное лежание в луже такому устройству не повредит.

Читать еще:  Шьем развивающую салфетку для малыша

Фонарик из «Кроны»

Наверняка у радиолюбителей имеются колодки от вышедших из строя 9 В батарей типа «Крона». На основе такой колодки можно собрать простой фонарик, которому фактически не нужен корпус. К контактам колодки через токоограничительный резистор подключается светодиод.

Снаружи светодиод и резистор обматываются несколькими слоями изоляционной ленты. В надетом на батарею положении фонарик образует с ней единый блок.

Таким образом, можно под самодельный фонарик приспособить практически любой подходящий корпус и батарейку, правда ниже 3,5 В уже потребуется ставить преобразователь питания светодиода. Спасибо, за внимание. Автор Denev.

Как сделать светодиодный фонарь своими руками?

Если по какой-либо причине нельзя воспользоваться стационарной электрической сетью, а в хозяйстве отсутствует переносной автономный светильник, то можно своими руками собрать светодиодный фонарь.

Преимущества LED светильников

Светодиодные осветительные элементы вытесняют с рынка привычные лампы накаливания. Это вызвано рядом преимуществ LED технологий:

  1. Отдача света в полупроводниках происходит более интенсивно. Они превосходят лампы накаливания по освещенности в 8 раз, а также работают лучше, чем натриевые или энергосберегающие приборы.
  2. За счет высокого коэффициента полезного действия по сравнению с распространенными лампочками светодиоды способны сэкономить от 60 до 90% электроэнергии. LED устройства расходуют меньше ресурсов, чем энергосберегающие (на 15-20%).
  3. Стоимость обслуживания полупроводников ниже, так как они имеют небольшое количество отказов и сбоев. Светодиоды используются в сложных эксплуатационных условиях – для аварийных систем, на высотных архитектурных объектах, в конструкциях с дорогой установкой, в освещении мостов.
  4. Новые приборы устанавливаются быстро, с немалой экономией по затратам на кабель, который в полупроводниках нужен меньшего диаметра.
  5. Продолжительность службы LED устройств: более 15 лет при работе по 8 часов в сутки.
  6. Для питания светодиодов применяют низкое напряжение. Это делает их монтаж и эксплуатацию безопаснее аппаратуры, рассчитанной на 220/380 В.
  7. Полупроводники обладают хорошей устойчивостью к вибрации, повышенной механической прочностью, высокими температурными характеристиками.
  8. Индекс цветопередачи полупроводниковых приборов превышает 80. Без потери энергии и использования фильтров устройства способны обеспечить глубокие и чистые цвета света.
  9. LED приборы подходят для таймеров, датчиков объема, диммеров (регуляторов силы света). Светодиоды широко применяются в программируемой аппаратуре с изменяемой интенсивностью освещения.
  10. В диодных изделиях отсутствуют ультрафиолетовое и инфракрасное излучения, свет монохроматический, нет стробирования и бликов. Это позволяет применять их в осветительных системах разного назначения, размеров и форм.
  11. У светодиодов минимальное время запуска. Даже при морозной погоде прибор мгновенно набирает цветовую температуру и заданный уровень освещенности.
  12. Из-за отсутствия вредных излучений и тепла полупроводники могут безопасно применяться в медицинских целях, а также для освещения помещений с людьми, животными и растениями.
  13. Приборы перерабатываются после выслуги положенного срока без получения опасных для экологии веществ.

Схема аккумуляторного фонарика на светодиодах

Простые схемы с обычными лампами являются энергозатратными. Они обладают слабым световым потоком и приводят к быстрому выходу ламп из строя. Чтобы избавиться от указанных недостатков, применяют более сложные устройства с аккумуляторами вместо батареек и светодиодами, которые заменяют лампы накаливания.

Для улучшения рабочих характеристик фонаря в его цепь включают дополнительные элементы:

  1. Зарядка осуществляется от сети 220 В через выпрямитель с использованием сглаживающего конденсатора С1. Схема сделана так, чтобы часть электроэнергии преобразовывалась в тепло и ограничивалось напряжение, прикладываемое к аккумулятору.
  2. Для индикации процесса зарядки в схему включен светодиод VD1.
  3. В качестве нагрузки в фонарике используют светодиоды.

Схема со сверхярким светодиодом DFL-OSPW5111Р

Для работы светодиодов в такой схеме используются 2 батарейки АА. DFL-OSPW5111Р отличается высокой яркостью света (30 cd). Требуемый для работы ток – 80 мА. Свечение прибора является белым.

В качестве стабилизатора напряжения часто используют готовый узел – микросхему ADP1110 (1111), которая относится к семейству переключающих регуляторов, способного функционировать от источников питания напряжением от 2 до 12 В. Устройство имеет стационарные выходы 12 В, 5,5 В, 3,3 В.

Возможно запрограммировать разные режимы работы микросхемы:

  • 200 мА при 5 В, если использовать 12 В вход и режим снижения;
  • 100 мА при 5 В от 3 В выхода и режим повышения.

Питание от батареек любых типов поступает на конденсатор постоянного тока относительно большой емкости и с его обкладок на ADP1110. В качестве источника энергии можно использовать, например, «таблетки».

Для дополнительной фильтрации напряжения и ограничения пульсаций тока в схеме используют катушку индуктивности и диод Шотки. В последнем за счет перехода металл-проводник возникает барьерный эффект. Прибор характеризуется малым прямым сопротивлением, повышенным быстродействием и небольшой емкостью перехода.

Читать еще:  Шкатулка в форме сердца

Необходимые состовляющие для сборки

Для сборки фонарика своими руками понадобится:

  • провода медные;
  • батарейки («таблетки») или аккумулятор;
  • светодиоды;
  • устройство для размещения источника питания;
  • паяльник и припой;
  • нож;
  • клей – жидкие гвозди, эпоксидная смола, суперклей (лучше иметь пистолет для его точного нанесения);
  • выключатель;
  • детали стабилизатора напряжения в зависимости от схемы (можно использовать микромодуль подзарядки, например, ТР4056; или собрать цепь из отдельных элементов самостоятельно);
  • корпус фонарика;
  • линзы для светодиода.

Как собрать своими руками?

Собрать светодиодный фонарь несложно при наличии минимальных навыков работы с паяльником. Например, можно воспользоваться старой материнской платой персонального компьютера и выпаять из нее «карман» для фиксации батареи питания. Это следует делать аккуратно, чтобы не повредить поверхность и контакты.

Корпус небольшого фонарика можно сделать из шприца. Для этого нужно малярным ножом срезать конус, на который устанавливается игла, и вынуть поршень.

Чтобы избежать перегрева светодиода, из алюминиевой пластинки нужно вырезать радиатор по размеру линзы. С помощью суперклея корпус держателя линзы соединяют с алюминиевым радиатором.

Медной проволокой пропаять контакты диода. В качестве изоляции можно воспользоваться термокембриком и зажигалкой.

Часть с линзой и светодиодом следует закрепить с помощью клея к корпусу из шприца.

Контакты светодиода соединяем с контактами аккумулятора и вставляем во внутрь конструкции.

Если плата модуля зарядки не помещается в оставшуюся часть шприца, ее можно разделить на две части и соединить между собой скотчем. Разорванные контакты следует пропаять медной проволокой.

Микровыключатель через резистор требуется подсоединить к плате модуля зарядки. Остальные контакты модуля расключаются в соответствии со схемой.

На поверхности после сборки фонарика должны остаться разъем micro-usb и кнопка выключателя. При правильном выполнении работ от одной зарядки такой фонарик будет работать 10-12 часов.

Доработка готового светодиодного фонаря

В некоторых случаях проще купить недорогой готовый фонарик на светодиодах и с помощью небольших усовершенствований сделать более совершенную модель.

Например, в устройстве HG-528 HUAGE и подобных ему по схемным решением фонарях, часто выходят из строя диоды EL1-EL5. Проблема возникает из-за того, что хозяева часто забывают отключить полупроводниковые элементы при зарядке от сети.

Свой фонарик можно переделать так, что произвести зарядку будет невозможно, если не изменить положение переключателя SA1 так, чтобы отключить светодиоды. Кроме этого, недолговечные аккумуляторы этих устройств можно заменить на более энергоемкие литий-ионные приборы от мобильных телефонов. Для чего из фонаря удаляются выпрямительные диоды VD1-VD4 и фильтр, состоящий из емкости С1 и двух резисторов R1, R2.

На освободившееся место размещают после небольшого выпиливания пластиковых деталей корпуса аккумулятор от сотового. Последний медным проводом соединяется со схемой прибора.

У Lentel GL01 светодиодного аккумуляторного фонаря разработчиками допущена ошибка в электрической схеме, которая также приводит к выходу из строя устройство, если она включена на зарядку при не отключенных светодиодах. К тому же, параллельно включены 7 диодов, что является причиной неравномерности тока, протекающего через них во время работы фонарика за счет отличающихся вольт-амперных характеристик полупроводниковых элементов. Это приводит к частому перегоранию как самих светодиодов, так и резистора R4.

Если отдельные резисторы (45 – 55 Ом) включить с каждым светодиодом последовательно, и резистор R4 убрать из цепи, то величины токов выровняются. Чтобы исключить во время зарядки аккумулятора попадание напряжения на светодиоды зарядного устройства, нужно HL1 (индикатор) подключить к первому выводу SA1.

Как отремонтировать светодиодный фонарик?

Наиболее распространенными причинами поломок фонарей, в которых в качестве осветительных приборов используются светодиоды, являются:

  • неисправности светодиодов;
  • отсутствие в цепи питающего напряжения;
  • поломка выключателя;
  • выход из строя проводов, которые идут от светодиода к аккумулятору;
  • контакты, к которым подключены элементы питания, окислились;
  • пробой или выгорание электронных элементов схемы.

Например, ремонт светодиодного фонарика-ручки часто связан с заменой полевого транзистора КТ315, который в схеме включен последовательно с одной из обмоток высокочастотного трансформатора Т1. Параллельно транзистору расположен светодиод VD1, являющийся нагрузкой блокинг-генератора.

Выбор разработчиками такого элемента, как КТ315, связан с его низкой стоимостью. Поэтому при ремонте устройства вместо установленного проводникового прибора можно использовать другие типы транзисторов с частотой более 200 МГц.

Если необходимо заменить трансформатор, то понадобится проволока 0,2 мм диаметром.

Нужно намотать по 20 витков для каждой обмотки в случае, когда используется ферромагнитное кольцо. При отсутствии последнего подойдет цилиндр, на который потребуется намотать обмотки уже по 100 витков каждая.

Ремонт прибора следует начинать с внешнего осмотра осветительных и электронных элементов цепи, проводов. При отсутствие явных признаков неисправности – выгоревших деталей, оборванных соединений, наличия налета и окислов, нарушающих нормальный электрический контакт, – понадобятся измерительные приборы, с помощью которых можно обнаружить вышедшие из строя электронные части.

Читать еще:  Самое надежное соединение проводов без паяльника

Самодельный супер яркий мини LED-фонарик 3 Вт своими руками

Во времена увлечения туризмом был приобретен фонарь Duracell c мощной криптоновой лампой на двух больших батарейках типоразмера D (в советском варианте тип 373). Светил отлично, но высаживал батарейки часа за 3-4.

Кроме того, дважды случилась неприятность – батарейки потекли и электролитом залило все внутри фонаря. Контакты окислились, покрылись ржавчиной и даже после чистки и установки новых элементов питания, фонарь уже не внушал доверия, а уж батарейки тем более. Выбросить было жалко, а не имение возможности использовать, натолкнуло на мысль переделать фонарь на модные сейчас литиевый аккумулятор и светодиод. С полгода в закромах лежал литиевый аккумулятор Sanyo 18650 емкостью 2600 мА/ч, у китайских товарищей выписал вот такой светодиод (якобы Cree XML T6 U2) с рабочим напряжением 3-3,6 В, током 0,3-3 А (опять же, якобы – мощностью 10 Вт), световым потоком 1000-1155 люмен, цветовой температурой 5500-6500 К и углом рассеивания 170 градусов.

Поскольку опыт переделки фонарей на питание от литиевых аккумуляторов уже имелся (ссылка 1 и ссылка 2), то решил пойти тем же путем: применить хорошо зарекомендовавшую себя связку: АКБ 18650 и контроллер заряда TP4056. Оставалось решить одну проблему – какой драйвер использовать для светодиода? Простым токоограничивающим резистором тут не отделаешься – мощность светодиода пусть и не 10 Ватт, как утверждают китайские товарищи, но все же. Изучая материал по «драйверостроению для мощных светодиодов» набрел на очень интересную, и как оказалось, часто применяемую микросхему АМС7135. На основе данной микросхемы китайцы давно и удачно завалили планету своими фонарями). Принципиальная схема питания мощного светодиода на основе АМС7135.

Как видим, допускается питание в диапазоне 2,7. 6 В, а это довольно широкий спектр источников питания, в том числе и литиевые аккумуляторы. Задача чипа – ограничить ток, протекающий через светодиод на уровне 350 мА.
Согласно информации производителя чипа, конденсатор Со нужно использовать, если:

  • длина проводника между АМС7135 и светодиодом больше 3 см;
  • длина проводника между светодиодом и источником питания больше 10 см;
  • светодиод и микросхема не установлены на одной плате.

В реальности производители фонарей зачастую пренебрегаю этими условиями, и исключают конденсаторы из схемы. Но как показал эксперимент – напрасно, о чем несколько позже. К дополнительным преимуществам ИС типа АМС7135 можно отнести наличие встроенной защиты при обрыве, КЗ светодиода и диапазон рабочих температур -4О. 85°С. Подробно документацию на чип АМС7135 можно изучить тут.

Схема электрическая фонаря

Еще одной важной и крайне полезной особенностью данной микросхемы является то, что их можно устанавливать параллельно для увеличения тока, протекающего через светодиод. В результате родилась такая схема:

Исходя из нее, ток протекающий через светодиод, составит 1050 мА, что на мой взгляд, более чем достаточно для совсем не тактического, а хозяйственного фонаря. Далее приступил к монтажу все в единую систему. При помощи дремеля в корпусе фонаря удалил направляющие для батареек и контактные шины:

Так же дремелем убрал посадочное гнездо для криптоновой лампы и сформировал площадку для светодиода

Поскольку мощный светодиод во время работы выделяет много тепла, то для его рассеивания решил применить теплоотвод, снятый с материнской платы.

По задумке, светодиод, теплоотвод и головная часть фонаря с отражателем будут создавать одно целое и накручиваясь на корпус фонаря не должны ни за что цепляться. Для этого обрезал грани теплоотвода, просверлил отверстия для проводов и приклеил светодиод к теплоотводу термоклеем.

В Sprint-Layout набросал плату драйвера, вытравил, спаял и так же приклеил к теплоотводу.

Как можно видеть, на плате драйвера установлены конденсаторы 10 мкф на входе и два по 0,1 мкф. Так вот, без них ток через светодиод составлял 850 мА, после их установки – 1030 мА. Далее, через прокладку из тонкого стеклотекстолита, приклеил к радиатору контроллер зарядки литиевого аккумулятора TP4056.

Сначала хотел всю конструкцию приклеить к отражателю:

Но этого оказалось не достаточно и пришлось сформировать подиум.

Далее упаковка АКБ в корпус фонаря, пайка проводов к кнопке и контроллеру.

Такую компоновку выбрал по причине не желания ковырять в корпусе фонаря отверстие под зарядку – все-же фонарь водонепроницаемый. Минус конечно есть – провода перекручиваются при наворачивании конструкции на корпус фонаря, но я сделал их длину с запасом и изломов нет. В результате получился хороший фонарь на мощном светодиоде в водонепроницаемом корпусе. В качестве зарядки – зарядное от смартфона с током 1 А.

Время работы составляет порядка двух часов, далее яркость снижается, но и этого времени вполне достаточно чтоб освещать пространство очень ярким светом. Специально для сайта «Электрические схемы» — Кондратьев Николай, Г. Донецк.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector