Простая светомузыка на 220 В
Цветомузыка своими руками.
Различные схемы цветомузыкальных автоматов.
Принцип работы цветомузыкального автомата.
Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов. Блока управления, блока усиления мощности и выходного оптического устройства.
В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в виде экрана(классический вариант) или применить электрические светильники направленного действия – прожектора, фары.
Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых эффектов.
Блок усиления мощности – это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе. От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного оптического устройства.
Блок управления контролирует интенсивность света, и чередование цветов. В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу – цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум – одного, а максимум – группы операторов-осветителей.
Если блок управления контролируется непосредственно музыкой, работает по какой – либо заданной программе, то цветомузыкальная установка считается – автоматической.
Именно такого рода “цветомузыки” обычно собирают своими руками начинающие конструкторы – радиолюбители, на протяжении 50-ти последних лет.
Самая простая (и популярная) схема “цветомузыки” на тиристорах КУ202Н.
Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценную, работающую “светомузыку”. Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема. Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот устойчиво моргает в ритм с ударными, средний – зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное тонкое – звенящее и пищащее.
Недостаток один – необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти “на полную” врубать свою “Электронику” для того, что бы добиться достаточно устойчивой работы устройства. В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс. Например, с 220 до 12 вольт. Только подключать его нужно наоборот – низковольтной обмоткой на вход усилителя. Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.
Схема “цветомузыки” на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока.
Схема предназначена для работы от линейного звукового выхода(яркость ламп не зависит от уровня громкости).
Рассмотрим подробнее, как она работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку разделительного трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры, через резисторы R1, R2, R3 регулирующие его уровень.
Раздельная регулировка необходима для настройки качественной работы устройства, путем выравнивания уровня яркости, каждого из трех каналов.
С помощью фильтров происходит разделение сигналов по частоте – на три канала. По первому каналу идет самая низкочастотная составляющая сигнала – фильтр обрезает все частоты выше 800 гц. Настройка фильтра производится с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 в схеме указаны – 1 мкФ, но как показала практика – их емкость следует увеличить, минимум, до 5 мкф.
Фильтр второго канала настроен на среднюю частоту – примерно от 500, до 2000 гц. Настройка фильтра производится с помощью подстроечного резистора R15. Номиналы конденсаторов С5 и С7 в схеме указаны – 0,015 мкФ, но их емкость следует увеличить, до 0,33 – 0,47 мкф.
По третьему, высокочастотному каналу проходит все что выше 1500(до 5000) гц. Настройка фильтра производится с помощью подстроечного резистора R22. Номиналы конденсаторов С8 и С10 в схеме указаны – 1000пФ, но их емкость следует увеличить, до 0,01 мкФ.
Далее, сигналы каждого канала в отдельности детектируются(используются германиевые транзисторы серии д9), усиливаются и подаются на оконечный каскад.
Оконечный каскад выполняется на мощных транзисторах, либо на тиристорах. В данном случае, это тиристоры КУ202Н.
Далее, идет оптическое устройство, конструкция и внешний которого зависит от фантазии конструктора, а начинка(лампы, светодиоды) – от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае – это лампы накаливания 220в, 60вт(если установить тиристоры на радиаторы – до 10 шт на канал).
Порядок сборки схемы.
О деталях приставки.
Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные – СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков. При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15 по 150-300 витков каждая.
Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки, минимум – 2А. Если количество ламп на каждый канал увеличить – соответственно возрастет потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный на рабочий ток минимум – 250 мА(а лучше – больше).
Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, – собирают активный фильтр. Далее – проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем – реально работающий канал.
Подобным образом необходимо собрать и отстроить все три канала. Подобное занудство гарантирует безусловную работоспособность устройства после “чистовой” сборки на монтажной плате, если работа проведена без ошибок и с применением “испытанных” деталей.
Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить. Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом – поможет избавиться от навесных проводов-перемычек.
Вместо тиристоров можно использовать и более”продвинутые” полупроводниковые приборы, например – оптосимисторы, не меняя при этом особенно схему. Это дает отличную гальваническую развязку между высоко и низковольтными цепями – такой элемент, как разделительный входной трансформатор становится необязательным. Вместо него, лучше поставить дополнительный предварительный усилительный каскад(на КТ315), что в свою очередь позволит снизить требования к транзисторам(по коэффициенту усиления). Необходимость в диодном мосте для выпрямления переменного напряжения, отпадает само собой.
Придется подобрать величину сопротивления резисторов ограничивающих ток входа оптосимисторов(R12, R18, R25). Например, для оптосимисторов ТСО132-10 при напряжении 12в, потребуются резисторы на 200 – 240 Ом.
Реально собранная светомузыка в процессе настройки
(19.10. 2015).
Она же – в корпусе, без крышки.(21. 10. 2015).
В работе.(27. 12. 2015).
В темноте.(27. 12. 2015).
Схема “бегущие огни”.
Автомат “бегущие огни” – еще одно популярное устройство. Его основным предназначением изначально было создание цветовых эффектов, для оформления диско – вечеринок Так что, хотя и с небольшой натяжкой, “бегущие огни” тоже можно отнести к разряду “цветомузык”.
Схема на логических элементах И-НЕ и триггерах, дает возможность регулировать частоту переключений(скорость “бегущего огня”) вручную.
Схема выполнена на двух триггерах микросхемы D2(К155ТМ2) и дешифраторах управления на D1(К155ЛА3), а скорость переключения задаются частотой мультивибратора на микросхеме D3(К155ЛА3). Частота импульсов на выходе мультивибратора на D3 зависит от постоянной времени частотозадающей цепи R10-R11-С6. Скорость переключения ламп можно регулировать при помощи переменного резистора R10. Уменьшая его сопротивление можно увеличивать скорость переключения, увеличивая – снижать.
Питающий трансформатор Тр1 понижающий с напряжением на первичной обмотке 220в, вторичной 6-8 в, мощностью от 5 ватт. Напряжение 5 вольт для питания микросхем получается с помощью стабилизатора КРЕН5А, или его аналога. Транзисторы – КТ315Б, тиристоры – КУ202Н, конденсаторы и резисторы – любого типа.
Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт “Электрика это просто”.
простая схема цветомузыки на лампах 220в
простая схема цветомузыки на лампах 220в
Все знают и почти каждый собирает это устройство мерцающее и мигающее под музыку-цветомузыка.В интернете многие ищут по разным запросам схемы цветомузыки и везде они разные.Вашему вниманию я представляю схему ниже внешний вид которой вы видите на картинки.И так, схема рабочей цветомузыки на 220 Вольт на теристорах
Простая схема цветомузыки
Деталей для неё понадобится самый минимум.
Покупаем цветные лампы накаливания на 220В
Учитывая, что выходной каскад у цветомузыки выполнен на тиристорах, то он обладает большой мощностью. Если тиристоры поставить на теплоотводы, то можно нагрузить на каждый канал по 1000 ватт. Но для дома вполне хватит ламп по 60-100 ватт.
Рисунок печатной платы для светомузыки
Я не стал использовать лазерно-утюжную технологию для такого простого рисунка платы. Я просто распечатал картинку зеркально и наложил её на фольгу.
Что бы бумага не смещалась, закрепляем ее скотчем или еще чем то фиксируем и накерниваем места будущих отверстий
Сами дорожки рисуем нитрокраской
В качестве трансформатора подойдет любой трансформатор из китайского блока питания, хоть от радиотелефона, хоть еще от чего то.
И смотрим полностью спаянную плату
Патроны прикрепляем к алюминиевому уголку
В дополнение фото присланное Айдаром Галимовым:
Так что не стесняемся,и можете задать вопросы и ему.
Как сделать цветомузыку для дома своими руками: схемы, фото
- Цветомузыка на транзисторах КТ805АМ
- Цветомузыка на светодиодах
- Схема цветомузыки для дома
- Видео о создании цветомузыки
Неисчерпаемый потенциал светодиодов в очередной раз раскрылся в конструировании новых и модернизации уже имеющихся цветомузыкальных приставок. 30 лет назад пиком моды считалась цветомузыка, собранная из разноцветных лампочек на 220 вольт, подключенных к кассетному магнитофону. Сейчас ситуация изменилась и функцию магнитофона теперь выполняет любое мультимедийное устройство, а вместо ламп накаливания устанавливают сверхъяркие светодиоды или светодиодные ленты.
Преимущества светодиодов перед лампочками в цветомузыкальных приставках неоспоримы: широкая цветовая гамма и более насыщенный свет; различные варианты исполнения (дискретные элементы, модули, RGB-ленты, линейки); высокая скорость срабатывания; низкое энергопотребление.
Как сделать цветомузыку с помощью простой электронной схемы и заставить светодиоды мигать от источника звуковой частоты? Какие варианты преобразования звукового сигнала существуют? Эти и другие вопросы рассмотрим на конкретных примерах.
Цветомузыка на транзисторах КТ805АМ (3-х канальная)
Первой представляем вашему вниманию цветомузыку на 12В с транзисторами КТ805АМ.
В данной цветомузыке используется минимум деталей: 6 сопротивлений номиналом 100 Ом, конденсаторы 5-ти номиналов, 3 транзистора КТ805АМ.
Также можно использовать другие транзисторы марки КТ, у нас — КТ829.
Данная цветомузыка для дома собиралась навесным монтажом, поскольку есть мало деталей, но ниже можно скачать печатную плату цветомузыки на 2 канала (стерео)
Необходимые радиодетали для сборки цветомузыки своими руками:
- 3 биполярных транзистора (VT1–VT3) — КТ805АМ (КТ829).
- Электролитические конденсаторы — C1 100 мкФ C2, C3 4.7 мкФ, C4 47 мкФ, C5 22 мкФ, C6 1 мкФ.
- 6 резисторов (R1–R6) — 100 Ом.
- Светодиод (LED1-LED3) — 12В.
Конденсаторы используем полярные (полярность соблюдать как на схеме) иначе работать не будет!
Вместо резисторов R4–R6 можно использовать переменные номиналом 10 кОм, вместо светодиодов — светодиодную ленту.
Схема цветомузыки для дома на транзисторах:
Для работы данной цветомузыки потребуется предусилитель, в качестве него можно использовать усилитель Вега10у-120с, подключаем к выходам на колонки.
Скачать печатную плату цветомузыки (3 цвета, 2 канала) можно ниже:
Как работает данная цветомузыка, собранная своими руками, смотрите ниже:
Цветомузыка на светодиодах своими руками
Эта светомузыкальная установка создаёт зрительный эффект на домашней ёлке или на дискотеке. С первыми аккордами музыки светодиодные гирлянды разгораются разноцветными переливами.
В основе работы схемы лежит принцип частотного разделения звукового сигнала в каналах, разным частотам соответствует свой цвет свечения светодиодов. Для устранения эффекта мерцания и снижения усталости глаз введён канал подсветки, отключение которого происходит при включении в работу канала синего цвета.
Схема устройства состоит из трёх светомузыкальных каналов: низкой — красный, средней — зелёный и высокой частоты — синий. Во входных цепях установлены регуляторы уровня сигнала, от режима установки которого зависит яркость гирлянд.
Уровень входного сигнала может варьироваться от 0,5 до 3 вольт. Дополнительно, для удобства, установлен регулятор уровня входного сигнала.
- Пошаговая инструкция по созданию самодельного усилителя звука для дома
В принципиальную схему кроме трёх каналов с входными фильтрами входят: входной усилитель сигналов, канал подсветки и адаптер питания.
Схема светомузыкальной установки на светодиодах:
Ключевыми устройствами являются тиристоры. Внешний сигнал с разграничением по уровню подаётся на верхний или нижний вход (линия или радио). Сигнал через регулятор яркости R9 и конденсатор С3 поступает на вход усилителя на транзисторе VT1 обратной проводимости. В усилителе предусмотрено автоматическое ограничение сигнала диодом VD1. Превышение сигнала на базе транзистораVT1 приводит к открытию диода VD1 и шунтированию перехода база-эмиттер.
Снятый с коллектора транзистора VT1 сигнал поступает для распределения на входные регуляторы уровня каналов — резисторы R1. Далее сигнал поступает на фильтры каналов с частотным разделением 50–200 Гц, 250–1000 Гц, 1200–5000 Гц.
После частотного разделения сигналы поступают на вход предварительных усилителей на тиристорах VS1. Резисторы R3 позволяют подогнать чувствительность входных тиристоров в связи с разбросом характеристик.
Усиленный сигнал с нагрузки R5 катода VS1 поступает на управляющий электрод усилителя мощности на тиристорах VS2. Светодиодные гирлянды HL1–HL21 включены попарно в анодную цепь выходного тиристора по десять штук в две параллельные линии. В светодиодные линии также установлены ограничительные резисторы R6, R7 (R17, R18 в подсветке).
Канал подсветки составлен на одном тиристоре VS3 и управляется с анода выходного тиристора синего канала.
Питание предварительного усилителя и выходных каналов раздельное — предварительный усилитель питается от двухполупериодного выпрямителя на диодном мосте VD3 и далее через резистор R16 и диод VD2 в обратном включении.
Диод VD2 предотвращает шунтирование тиристоров каналов постоянным напряжением, сглаженным конденсатором С4. Каналы светомузыкальной установки питаются импульсным напряжением с выпрямителя VD3.
Силовой трансформатор Т1 установлен небольшой мощности (не более 20 ватт) от китайского адаптера. Конечно при возможной замене светодиодной гирлянды на лампочки, мощность трансформатора придётся увеличить раз в пять.
Наладка данной цветомузыки для дома заключается в подборе начальных уровней сигнала на каждом канале. Желательно подать сигнал с генератора, а затем подбором конденсаторов С1, С2 добиться соответствия полосы пропускания каналов.
- Смотрите также, как сделать автономное освещение на солнечных батареях своими руками
Канал подсветки подстраивается резистором R14.
Список радиоэлементов для 1 канала (красного):
- Тиристоры и симисторы (TS1, TS2) — КУ102Б (КУ101Б) и КУ102Г (КУ101Г).
- 21 красный светодиод (HL1–HL21).
- 2 пленочных или керамических конденсатора — С1 0.1 мкФ и С2 0.05 мкФ.
- Переменный резистор (R1) — 10 кОм.
- Подстроечный резистор (R3) — 100 кОм.
- Резисторы — R2 1 кОм; R4 8.2 кОм; R5 1 кОм; R6, R7 57 Ом.
Список радиоэлементов для 2 канала (зеленого):
- Тиристоры и симисторы (TS1, TS2) — КУ102Б (КУ101Б) и КУ102Г (КУ101Г).
- 21 зеленый светодиод (HL1–HL21).
- 2 пленочных конденсатора — С1 0.1 мкФ и С2 0.05 мкФ.
- Переменный резистор (R1) — 10 кОм.
- Подстроечный резистор (R3) — 100 кОм.
- Резисторы — R2 1 кОм; R4 8.2 кОм; R5 1 кОм; R6, R7 56 Ом.
Список радиоэлементов для 3 канала (синего):
- Тиристоры и симисторы (TS1, TS2) — КУ102Б (КУ101Б) и КУ102Г (КУ101Г).
- 21 синий светодиод (HL1–HL21).
- 2 пленочных конденсатора — С1 0.1 мкФ и С2 0.05 мкФ.
- Переменный резистор (R1) — 10 кОм.
- Подстроечный резистор (R3) — 100 кОм.
- Резисторы — R2 1 кОм; R4 8.2 кОм; R5 1 кОм; R6, R7 56 Ом.
- 21 оранжевый светодиод (HL1–HL21).
Список радиоэлементов для БП и входов «линия», «радио»:
- Тиристор и симистор (TS3) — КУ102Г (КУ101Г).
- Биполярный транзистор (VT1) — КТ312Б или КТ315.
- 2 диода (VD1, VD2) — КД512А (КД106, КД512Б или другой маломощный).
- Диодный мост (VD3) — КЦ407А.
- Трансформатор (T1) — 12В 1А (можно на 2А и выше).
- Пленочный конденсатор (С3) — 1 мкФ.
- 2 электролитических конденсатора (С4, С5) — 10 мкФ х 16В.
- Переменный резистор (R9) — 10 кОм.
- Подстроечный резистор (R14) — 10 кОм.
- Резисторы — R8 100 кОм; R10 180 кОм; R11 10 кОм; R6, R12 1 кОм; R13 100 Ом; R15 1 кОм; R16 560 Ом; R17, R18 56 Ом.
Таблица замен: