12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как удвоить напряжение с трансформатора просто

Как удвоить напряжение с трансформатора просто

Предлагаем еще несколько схем умножения напряжения. Изображена мостовая двухтактная схема удвоения напряжения. В этой схеме частота пульсаций выпрямленного напряжения равна удвоенной частоте сети (fn=2fc), обратное напряжение на диодах в 1,5 раза больше выпрямленного, коэффициент использования трансформатора — 0,64. Ее можно представить в виде двух последовательно включенных однополупериодных схем, работающих от одной обмотки трансформатора и подключенных к общей нагрузке. Если среднюю точку (точку соединения конденсаторов) подключить к общему проводу, получится двухполярный источник с выходным напряжением ±U.
Вторая схема удвоения напряжения показана на рисунке 2, который вы видите ниже:

В ней вход (вторичная обмотка трансформатора) и выход имеют общую точку, что в ряде случаев может оказаться полезным. Здесь в течение отрицательного полупериода входного напряжения конденсатор С1 заряжается через диод VD2 до напряжения, равного амплитудному значению U-1. Во время положительного полупериода диод VD2 закрыт, а конденсатор С1 оказывается включенным последовательно с вторичной обмоткой Т1, поэтому конденсатор С2 через диод VD1 заряжается до удвоенного значения напряжения. Добавив к данной схеме еще один диод и конденсатор, получим варианты утроителей напряжения, которые представлены на следущих рисунках:

Схему на рис.2 можно каскадировать и получать весьма высокие напряжения. Такой каскадный умножитель представлен на рисунке:

В этой схеме все конденсаторы, за исключением С1, заряжаются до удвоенного напряжения Ui (Uc=2Ui), а С1 заряжается только до Ui. Таким образом, рабочее напряжение конденсаторов и диодов получается достаточно низким. Максимальный ток через диоды определяется выражением:

lmax=2,1IH,
где lH—ток, потребляемый нагрузкой.

Необходимая емкость конденсаторов в этой схеме определяется по приближенной формуле:

С=2,85N*Iн/(Кп*Uвых), Мкф

где N—кратность умножения напряжения;
IН — ток нагрузки, мА;
Кп — допустимый коэффициент пульсаций выходного напряжения, %;
Uвыlx—выходное напряжение, В.

Емкость конденсатора С1 необходимо увеличить в 4 раза по сравнению с расчетным значением (хотя в большинстве случаев хватает и двух-трех- кратного увеличения). Конденсаторы должны быть с минимальным током утечки (типа К73 и аналогичные).

Умножать напряжение можно и с помощью мостовых выпрямителей. Схема ниже на рисунке 6:

Здесь удобно взять малогабаритные выпрямительные мосты, например, серий RB156, RB157 и аналогичные. Конденсаторы СЗ. С6 (и далее) — емкостью 0,22. 0,56 мкФ. Следует учитывать возрастание напряжения на обкладках конденсаторов и соответствующим образом выбирать их рабочее напряжение. Это же относится и к конденсаторам фильтра С1, С2.

При совсем малых токах нагрузки можно воспользоваться схемой одно- полупериодного умножителя:

В зависимости от необходимого выходного напряжения Uвых=0,83Uo определяется количество каскадов N по приближенной формуле:

N=0.85U0/U1

где U1 — входное напряжение.

Емкость С конденсаторов С1. СЗ рассчитывается:
С=34Iн*(Т+2)/U2
где lH —ток нагрузки умножителя;
U2 — падение напряжения на R1 (обычно выбирается в пределах 3. 5% от U-1).

Читать еще:  Простейший бестрансформаторный источник питания для светодиодной матрицы

Снизить коэффициент пульсаций в умножителях напряжения можно с помощью транзисторных фильтров (рис.8),

Которые существенно уменьшают пульсации и шумы выходного напряжения и характеризуются весь малыми массогабаритными показателями. Сейчас выпускаются мощные транзисторы с допустимым напряжением 1,5 кВ и выше при токе нагрузки до 10 А. Диоды выбираются из условия Uобр=1,5U0 и Iмакс=2Iвых — Емкость С конденсаторов С1, С2 рассчитывается по приближенной формуле:

С=125Iн/U0

Сопротивление резистора R1 выбирается в пределах 20. 100 Ом. Емкость конденсатора СЗ определяется из выражения:

где m — число фаз выпрямителя (т=2);
fc — рабочая частота умножителя (fc=50 Гц).

Сопротивление R2 подбирается экспериментально (в пределах 51. 75 кОм), поскольку оно зависит от коэффициента усиления по току транзистора VT1. В фильтре можно использовать отечественные транзисторы КТ838, КТ840,КТ872, КТ834 и аналогичные.

Как сделать простую схему удвоителя напряжения из диодов и конденсаторов, увеличиваем напряжение на выходной обмотке трансформатора.

Данная простая схема удвоителя, а если еще точнее говоря, то почти утроителя напряжения будет весьма полезна именно в тех случаях, когда у вас имеется трансформатор с пониженным напряжением, а на выходе нужно получить раза в два, два с половиной больше. Например, когда разбираешь какую нибудь старую электротехнику, то можно из нее вытащить силовой трансформатор. Когда же начинаешь на нем измерять выходное напряжение, то оказывается, что оно где-то 6, 7, 8 вольт. Хотя зачастую применяется 12, реже 15, и 24 вольта. Вот и поставив на выходную обмотку эту схему удвоителя напряжения мы из более низкого переменного напряжения можем получить более высокое, которое нам необходимо.

Но, не все так просто в этой схеме. Закона сохранения энергии никто не отменял. То есть, наш трансформатор имеет максимальную выходную мощность, которая равна напряжение выходной обмотки в вольтах умноженное на силу максимального тока в амперах, который может обеспечить эта вторичная обмотка. Когда же мы к этой выходной обмотке подключим наш диодно конденсаторный удвоитель напряжения, то на его выходе будет увеличенное напряжение, но это произойдет за счет уменьшения силы тока на выходе. Следовательно повышение напряжения происходит за счет увеличенного потребления тока с выхода трансформатора.

Теперь разберемся в конкретных потерях этого тока. Потеря будет приблизительно равна больше чем 50%. То есть, на выходе удвоителя можно реально получить где-то 35-45% от 100%, что может обеспечить выходная обмотка трансформатора. Другими словами говоря. Если наш трансформатор при своем небольшом напряжении около 6 вольт мог выдавать допустим 1 ампер, то при использовании схемы удвоителя напряжения мы получим 14 вольт с максимальным выходным током где-то в 0,4 А.

Так что перед использованием подобных удвоителей напряжения учтите данный факт, касающейся этой самой потери по току. Если же ваш трансформатор на своей выходной обмотке имеет достаточно толстый провод и рассчитан на приличный ток, но при этом выдает пониженное напряжение, то применение таких удвоителей полностью оправдано.

Читать еще:  Красивый держатель для штор

Ну, а теперь пару слов о принципе действия данного удвоителя напряжения. Итак, как известно переменный ток периодически меняет свою полярность. Его плюс и минус постоянно меняются местами, имея синусоидальную форму. Мы имеем два конденсатора, каждый из которых заряжается своей полуволной. То есть, диоды стоят таким образом, что при одной полярности переменного тока происходит заряд одного конденсатора, а при противоположной полярности заряжается второй конденсатор. В результате за один период происходит заряд обоих емкостей. Эти конденсаторы соединены между собой последовательно. Следовательно их суммарное напряжение будет в два раза больше, чем на каждом из них по отдельности. Но если измерить выходное напряжение на удвоителе, то оно окажется чуть более чем 2 раза от того, что выходит со вторичной обмотки трансформатора. Почему так происходит?

Дело в том, что существует так называемое действительное значение напряжения и амплитудное. Амплитудное значение в 1,41 раза больше действительного. Если посмотреть на графике, то максимальная точка, пик синусоиды переменного напряжения и будет амплитудным значением. В то время как усредненное значение этих синусоидальных напряженией будет соответствовать действительному значению напряжения. Когда происходит заряд конденсатора после выпрямительного диода, моста, то величина этого напряжения будет соответствовать амплитудному напряжению. То есть, наши 6 вольт переменного напряжения, что на выходе трансформатора увеличиваем в 1,41 и уже умножим на 2. И получаем итоговое напряжение на выходе нашего удвоителя, точнее почти утроителя, напряжения.

Теперь какие именно нужно ставить диоды и конденсаторы в схему удвоителя напряжения. Обратное напряжение диодов не должно быть меньше, чем то напряжение, которое у нас имеется на входе удвоителя напруги. А лучше иметь запас как по обратному напряжению, так и по прямому току не менее 25%. Ну, и прямой ток применяемых диодов должен быть больше, чем максимальный ток, что мы будем иметь на выходе схемы под нагрузкой. От емкости конденсаторов зависит как величина падения напряжения, так и сила максимального тока. То есть, чем больше емкость будут иметь конденсаторы, тем меньше будет падение напряжения при работе схемы, так и большую силу тока мы получим, протекающего через нагрузку. Конденсаторы должны быть рассчитаны на напряжение не меньше, чем выходное на трансформаторе (все тот же минимальный запас в 25%).

Видео по этой теме:

P.S. Для питание простых нагрузок, типа лампочки, светодиоды, нагреватели, простые схемы, не требующие особой стабильности данный удвоитель можно подключать напрямую. Но если вы планируете питать этим удвоителем более чувствительные к стабильному напряжению схемы, то придется применять еще стабилизаторы напряжения. К примеру можно использовать простой и недорогой стабилизатор на микросхеме LM317, или подобные ему. Да хотя бы поставить самый обычный стабилизатор напряжения на транзисторах и опорном стабилитроне, чего уже хватит для питания многих схем.

Как получить различные напряжения от трансформатора с одной вторичной обмоткой

Предположим у нас имеется блок питания, в котором применён понижающий трансформатор с одной вторичной обмоткой без отводов (рис. 1.). Как можно в этом случае получить ряд других выходных напряжений?

Читать еще:  Индикатор температуры из батарейки Duracell своими руками

Обычно в таких случаях наматывают дополнительные обмотки на трансформатор, что во-первых, трудоёмко, а во вторых не всегда выполнимо. Решить эту проблему позволяет применение дополнительного выпрямителя напряжения, который можно использовать для получения как повышенного напряжения, так и для получения отрицательного выходного напряжения.

В качестве примера приведён трансформаторный блок питания, в котором трансформатор Т1 имеет коэффициент трансформации 20:1, что позволяет получить из переменного сетевого напряжения 220 В напряжение 11 В, которое после выпрямления диодным мостом будет равным 15,5 В, так как 11*2 0,5 =15,5 (здесь и далее имеется ввиду напряжение холостого хода). Пульсации выходного напряжения сглаживаются RC фильтром, где R — это выходное сопротивление выпрямителя, С — это конденсатор фильтра С1.

Рис.1. Схема классического трансформаторного блока питания без стабилизации выходного напряжения

На рисунке 2 изображена схема трансформаторного блока питания, которая помимо основного выходного напряжения +15,5 вольт позволяет получить повышенное выходное напряжение +31 вольт. Здесь применён выпрямитель с удвоением напряжения, выполненный на диодах VD5, VD6, разделительном конденсаторе С2 и конденсаторе фильтра С3. Если бы анод диода VD5 был бы подключён к общему проводу, то на выходе выпрямителя было бы напряжение +15,5 вольт, но поскольку анод диода VD5 подключён к выходу основного выпрямителя, то выходные напряжения выпрямителей складываются и на выходе второго выпрямителя получается напряжение +31 вольт. Недостатком такой схемы включения дополнительного выпрямителя является зависимость выходного напряжения второго выпрямителя от степени нагрузки основного, так как под мощной нагрузкой выходное напряжение +15,5 вольт будет проседать, следовательно и выходное напряжение второго выпрямителя (+31 вольт) так же понизится, однако в некоторых случаях такая зависимость может быть вполне полезной.

Рис.2. Получение удвоенного выходного напряжения

На рисунке 3 изображена альтернативная схема подключения удваивающего выпрямителя, при такой схеме включения повышенное выходное напряжение гораздо меньше зависит от величины основного напряжения.

Рис.3. Схема выпрямителя с удвоением напряжения позволяет поучить двойную величину выходного напряжения

Для получения отрицательного выходного напряжения (рис. 4.) используется выпрямитель с удвоением напряжения, в котором все элементы включены в обратной полярности, так что на его выходе будет присутствовать отрицательное напряжение величиной -15,5 вольт.

Рис.4. Получение отрицательного выходного напряжения с помощью выпрямителя с удвоением напряжения

Во всех вышеописанных схемах выпрямителей конденсатор С2 включён последовательно со вторичной обмоткой трансформатора Т1, так что максимальный ток нагрузки вторичных напряжений будет зависеть от ёмкости этого конденсатора. Для получения более низких выходных напряжений можно воспользоваться интегральными стабилизаторами типа 78хх или 79хх (7805, 7912), включёнными по классическим схемам, не забывая ставить на их выходы блокировочные конденсаторы, предотвращающие возможное самовозбуждение этих микросхем.

Все эти выпрямительные схемы могут быть использованы одновременно, так что можно получить от одного блока питания ряд напряжений +15,5, +31 и -15,5 вольт.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector