2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчик влажности почвы своими руками

Датчик влажности почвы своими руками

Поэт Андрей Вознесенский однажды сказал так: «лень – двигатель прогресса». Пожалуй, трудно не согласиться с этой фразой, ведь большинство электронных устройств создаются именно с той целью, чтобы облегчить нашу с вами повседневную жизнь, полную забот и всяких разных суетных дел.

Если вы сейчас читаете эту статью, то вас, наверное, очень утомляет процесс полива цветов. Ведь цветы – существа нежные, чуть их перельёшь, недовольны, забудешь полить на денёк, так всё, они вот-вот увянут. А сколько цветов в мире погибло лишь от того, что их хозяева уехали в отпуск на недельку, оставив зелёных бедолаг чахнуть в сухом горшке! Страшно представить.

Именно для предотвращения таких ужасных ситуаций придуманы системы автоматического полива. На горшок устанавливается датчик, замеряющий влажность почвы – он представляет собой для металлических прутка из нержавеющей стали, воткнутые в землю на расстоянии сантиметра друг от друга.

По проводам они подключаются к схеме, задача которой открывать реле только тогда, когда влажность упадёт ниже заданной и закрывать реле в тот момент, когда почва вновь насытится влагой. Реле, в своё очередь, управляет насосом, который качает воду из резервуара прямо под корень растению.

Схема датчика

Как известно, электропроводимость сухой и влажной почвы отличается довольно значительно, именно этот факт лежит в основе работы датчика. Резистор номиналом 10 кОм и участок почвы между прутками образуют делитель напряжения, их средняя точка подключается напрямую на вход ОУ. На другой вход ОУ напряжение подаётся со средней точки переменного резистора, т.е. его можно настраивать от нуля до напряжения питания. С его помощью выставляется порог переключения компаратора, в роли которого и работает ОУ. Как только напряжение на одном его входе превысит напряжение на другом – на выходе окажется логическая «1», загорится светодиод, транзистор откроется и включит реле. Транзистор можно применить любой, структуры PNP, подходящий по току и напряжению, например, КТ3107 или КТ814. Операционный усилитель TL072 или любой аналогичный, например, RC4558. Параллельно обмотке реле следует поставить маломощный диод, например, 1n4148. Напряжение питания схемы – 12 вольт.

Читать еще:  Мужская открытка-рубашка

Из-за длинных проводов от горшка до самой платы может возникнуть такая ситуация, что реле переключается не чётко, а начинает щёлкать с частотой переменного тока в сети, и только спустя какое-то время устанавливается в открытом положении. Для устранения этого нехорошего явления следует поставить электролитический конденсатор ёмкостью 10-100 мкФ параллельно датчику. Архив с платой тут. Удачной сборки! Автор – Дмитрий С.

Самодельный датчик влажности почвы лучше китайского

Так вот, с датчиком все нормально, но вот щуп за месяц ощутимо окислился и временами дает сбой в показаниях.

Как видите, пластина на щупе от коррозии превратилась в зеленый коралл и даже повреждена. При таких повреждениях чистка от окисления ничего не даст.

Если заказывать новый щуп, который стоит копейки , пройдёт больше месяца, прежде чем его доставят из Китая, он уже будет не актуален.

На ум пришла интересная идея: что если сделать щуп самому.

  • Сэкономим деньги;
  • Не потратим время;
  • Рассада будет под контролем.
  • Опять же, новый и бесценный опыт.

Точнее, использовать вместо стандартного щупа два нержавеющих электрода и клеммную колодку.

Эффект оказался тот же: те же показания.

Но я решил не останавливаться на достигнутом, и использовать эту конструкцию без применения датчика YL-38 , т. е. подсоединить к плате Arduino , но со стягивающим сопротивлением на 10 кОм.

Схема следующая, в дальнейшем можно добавить ещё элементы по мере необходимости и уже использовать в других проектах.

В программе XOD IDE для измерения влажности почвы использовал следующий алгоритм.

Как видите, показания меняются в зависимости от содержания воды в грунте.

В таком случае, есть ли смысл покупать китайские датчики, если можно обойтись и без них.

На этом сегодня все, надеюсь было интересно.

Готовую программу можете скачать по ссылке с Яндекс Диск . https://yadi.sk/d/fKwFkw3ylYmksA

Увлекаетесь конструированием на Arduino?

Вот ссылки, где можно приобрести выгодно и с быстрой доставкой платы Arduino UNO , но лучше купить Стартовый комплект для Arduino UNO , в котором уже находятся все компоненты для начального моделирования и программирования.

А ещё, Raspberry Pi 4 model B — покупайте у проверенного продавца и хорошего качества.

Хотите больше статей о программировании в программе XOD IDE, рекомендую перейти по ссылке в меню навигатора канала:

Спасибо, что дочитали статью до конца.

Надеюсь статья была вам полезна и интересна.

Понравилась статья, ставьте палец вверх.

Впереди ещё много интересного!

Вы можете помочь проекту в развитии:

Сделай сам своими руками О бюджетном решении технических, и не только, задач.

Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки

Эта статья возникла в связи с постройкой автоматической поливальной машины для ухода за комнатными растениями. Думаю, что и сама поливальная машина может представлять интерес для самодельщика, но сейчас речь пойдёт о датчике влажности почвы. https://oldoctober.com/

Читать еще:  5 полезных идей для кухни

Самые интересные ролики на Youtube

Пролог.

Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.

Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.

Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.

Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней. электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.

Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.

Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.

И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в «аккумулятор».

Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.

Электрическая схема порогового датчика влажности почвы.

В результате изысканий появилась эта схема на одной единственной микросхеме. Подойдёт любая из перечисленных микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A. У нас эти микросхемы продают всего по 6 центов.

C1 = 1µF
C2 = 1µF
C3, C4 = 0,1µF
C5 = 10µF
DD1 = К561ЛЕ5

Читать еще:  Антенна для смартфона за 3 минуты

R9 = из расчёта 1kΩ на каждый Вольт
напряжения питания.

Датчик влажности почвы представляет собой пороговое устройство, реагирующее на изменение сопротивления переменному току (коротким импульсам).

На элементах DD1.1 и DD1.2 собран задающий генератор, вырабатывающий импульсы с интервалом около 10 секунд. https://oldoctober.com/

Конденсаторы C2 и C4 разделительные. Они не пропускают в измерительную цепь постоянный ток, которые генерирует почва.

Резистором R3 устанавливается порог срабатывания, а резистор R8 обеспечивает гистерезис усилителя. Подстроечным резистором R5 устанавливается начальное смещение на входе DD1.3.

Конденсатор C3 – помехозащищающий, а резистор R4 определяет максимальное входное сопротивление измерительной цепи. Оба эти элемента снижают чувствительность датчика, но их отсутствие может привести к ложным срабатываниям.

Не стоит также выбирать напряжение питания микросхемы ниже 12 Вольт, так как это снижает реальную чувствительность прибора из-за уменьшения соотношения сигнал/помеха.

Я не знаю, может ли длительное воздействие электрических импульсов оказать вредное воздействие на растения. Данная схема была использована только на стадии разработки поливальной машины.

В реальной конструкции автомата для полива растений я использовал другую схему, которая генерирует всего один короткий измерительный импульс в сутки, приуроченный ко времени полива растений.

Как это работает?

Прямоугольные импульсы большой длительности (поз.1), проходя через делитель напряжения, образованного элементами C2, R2, R3, Rпочвы, R4, C3, превращаются в короткие импульсы (поз.2). Эти импульсы через конденсатор С4 поступают на вход элемента DD1.3. Туда же, через резистор R6, поступает некоторый уровень постоянного напряжения (поз.3) с делителя напряжения R5.

Когда общий уровень напряжения на входе DD1.3 (поз.4) достигает порога срабатывания компаратора (отмечено красной точкой), запускается одновибратор на DD1.3, DD1.4. Длительность управляющего импульса на выходе DD1.4 определяется постоянной времени R7, C5.

Конструкция электродов.

Конструкция электродов должна обеспечить возможность измерения влажности почвы возле корней растения. Это особенно актуально для кактусов, полив которых осуществляется мизерным количеством воды.

Для изготовления электродов я сначала выбрал стальную углеродистую проволоку, но она слишком быстро заржавела, и её пришлось заменить на нержавеющею.

Для уменьшения уровня внешних электромагнитных помех, электроды соединяются со схемой экранированным кабелем, оплётка которого подключена к корпусу прибора.

А это детали, из которых были собраны электроды.

  1. Винт М3х8.
  2. Гровер М3.
  3. Шайба М3.
  4. Лепесток М3.
  5. Втулка – сталь, Ø8х10мм.
  6. Винт М3х6.
  7. Пластина – стеклотекстолит S = 2мм.
  8. Электрод – нерж. сталь Ø1,6х300мм.

Наверное, можно было бы выбрать и другой способ крепления электродов. Но, я выбрал такое крепление, чтобы можно было оперативно регулировать глубину погружения тридцатисантиметровых электродов в почву, а кабель, при этом, не создавал слишком большую нагрузку при погружении электродов в неглубокий горшок.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector