1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Альтернативная энергия

Альтернативная энергия для дома: выбираем источник

Многие полагают, что дешевое отопление частного дома возможно только на магистральном газе. Подумаем, что делать, если его нет, и подведение не планируется, и какой может быть альтренативная энергия для дома.

  • Как работает ветрогенератор.
  • Как установить солнечный коллектор.
  • Как обустроить тепловой насос.
  • Как выбрать инвертор.

Сегодня, когда цены на энергоносители стремительно растут вверх, а стоимость подключения к трубе с «голубым топливом» неоправданно высока, всё большее число домовладельцев отказывается от традиционных энергоресурсов и обращает свой взор на альтернативные источники энергии для дома.

Опираясь на знания экспертов и опыт участников forumhouse.ru мы расскажем вам, чем можно заменить газ; как ветер, солнце и тепло земли становятся альтернативой электричеству из проводов — используя их, можно осветить и обогреть загородный дом.

Альтернативный источник электроэнергии: ловец ветра

Именно так можно назвать ветрогенератор. Люди с давних пор используют силу ветра в качестве источника альтернативной энергии.

Пройдя долгий путь, знакомые всем ветряные мельницы превратились в современные ветроэнергетические установки способные вырабатывать электроэнергию.

По какому принципу работает ветрогенератор

Всё довольно просто. Поток ветра вращает лопасти ветроколеса, заставляя таким образом вращаться вал электрогенератора.

Генератор в свою очередь вырабатывает электрический ток.

Следует помнить, что генератор выдает непостоянное напряжение с различной частотой. На случай отсутствия ветра в комплект ветроэнергетической системы входит блок аккумуляторных батарей, куда и поступает выработанная генератором электроэнергия.

Среди индивидуальных домовладельцев наиболее широкое распространение получили ветроэнергетические установки мощностью до 10 кВт. Имеются три основных типа конструкции ветродвигателей:

  • Малолопастные. Чаще всего имеют три лопасти. Отличаются высоким КПД и простотой конструкции. Недостатки: из-за малой площади лопастей, начальный запуск двигателя требует скорости ветра не менее 5-5 м/с. Также пользователи отмечают высокий уровень шума.
  • Многолопастные. На ветровое колесо монтируется от 18 до 24 выгнутые лопасти. Начинают работать при скорости ветра в 2-4 м/с. Отличаются низким уровнем шума, но и более низким КПД, чем малолопастные ветродвигатели. Недостатки: усложненность конструкции, которая мешает установить ветрогенератор своими руками, и возникающий при их работе гироскопический эффект.
  • Роторные ветродвигатели – имеют вертикально расположенные лопасти, которые двигаются не по прямой, а по кругу. Достоинства: стабильная работа при постоянном ветре, низкий уровень шума. Существенный недостаток подобной конструкции ветродвигателя низкий КПД, не более 18 %.

Посмотрим, как же сделать ветроэнергетическую установку эффективной в наших условиях.

Интересен личный опыт участника forumhouse.ru Александра Капустина (ник на форуме Бывалый 1406)

– Размещать ветрогенератор следует на площадке, где для ветров существует как можно меньше помех. Энергия ветра – это кубическая функция скорости ветра. Это означает, что незначительные изменения скорости ветра вызывают существенные изменения выходной мощности. В целях безопасности ставить ветряк желательно дальше от жилых построек. О высоте мачты – ставим как можно выше.

В условиях поселков под Москвой можно рекомендовать высоту мачты не менее 15 метров. А при самостоятельном расчёте системы альтернативного энергоснабжения частного дома сначала необходимо выяснить, какое количество энергии требуется от системы. Для этого придётся определить пиковую мгновенную мощность, а также рассчитать две величины ожидаемого суточного энергопотребления — его максимальное и среднее значения.

Следует помнить, что в наших климатических условиях ветряки могут работать на полную мощность примерно 20–30% дней в году, поэтому ветрогенератор следует рассматривать как дополнительную, резервную систему электроснабжения по выработке электроэнергии для питания бытовых электроприборов.

Ловцы солнца

Как можно использовать энергию солнца: первое, что приходит в голову – солнечная батарея.

Уже никого не удивить фотоэлементами, размещенными на крыше коттеджа.

Но речь в нашем материале пойдёт не о них, а об устройстве способном преобразовывать солнечную энергию в тепло пригодное ля отопления или горячего водоснабжения дома.

Солнечные коллекторы

За ответом на вопрос, что такое солнечный коллектор, обратимся за разъяснениями к заместителю технического директора компании «АкваБур» Евгению Касаткину.

– В основу гелиосистемы или, проще говоря, солнечного коллектора заложен принцип получения тепла от солнечного излучения и дальнейшей передачей накопленной энергии в систему ГВС или отопления.

Существуют два вида солнечных коллекторов:

  • Вакуумный солнечный коллектор. Съем потенциала в данной системе производиться с помощью вакуумных трубок. Вакуумная трубка – это колба с двойным стеклом с выкаченным из неё воздухом. С внутренней стороны колба покрыта отражающим материалом, который впускает солнечное излучение, но не выпускает наружу. А во внутренней части системы, находятся трубки со стержнем, в котором находиться теплоноситель. Вакуумная прослойка даёт возможность сохранить около 95% улавливаемой тепловой энергии.
  • Плоский солнечный коллектор. Съем потенциала в данной системе основан на поглощении солнечного излучения абсорбирующей пластиной, после чего энергия, в виде накопленного тепла передаётся жидкому носителю. Обратная сторона солнечного коллектора покрывается теплоизоляцией.

Какую систему выбрать с учётом работы в наших условиях

По мнению руководителя направления отдела развития компании «Виссманн» Михаила Мурашко:

При пасмурной погоде, смоге и рассеянном излучении наиболее эффективно работают трубчатые вакуумные коллекторы. А плоские солнечные коллекторы, более оптимальны для использования в районах с высокой солнечной инсоляцией.

Евгений Касаткин:

– В зимний период и в северных районах солнечный коллектор может использоваться как дополнительная система, подключённая к системе отопления или ГВС. Но наилучшие показатели мы получим летом, когда система при правильной её установке и монтаже, может полностью удовлетворить вашу потребность в горячей воде, без использования косвенных систем нагрева воды.

Установка солнечного коллектора позволит вам получить практически бесплатное тепло. Если системе необходима принудительная циркуляция теплоносителя, то электричество потребуется лишь для работы насоса. А в солнечный день, гелиосистема может нагреть воду до температуры 50-70 С.

Тепловые насосы

Как гласит закон сохранения энергии: «Энергия не может возникнуть из ничего и не может просто так исчезнуть, она может только переходить из одной формы в другую».

В земле, воздухе и воде содержится большое количество низкопотенциальной тепловой энергии которую можно использовать для отопления дома. Остаётся только собрать эту рассеянную тепловую энергию и «запустить» её в систему теплоснабжения дома. Для этого применяется специальное устройство – тепловой насос.

В чем заключается эта технология, объясняет директор компании «SagaTherm» Александр Сагалович:

– Тепловой насос – это холодильная машина.В обычных условиях тепловая энергия передается от более нагретого тела к менее нагретому. Тепловой насос может забирать тепловую энергию у менее нагретого тела и передавать его более нагретому, нагревая его еще сильнее.

Тепловой насос способен отбирать тепловую энергию из следующих источников – воздуха, воды и земли. В наших условиях наиболее целесообразно построить систему тепловых насосов, базирующуюся на отборе тепла земли и воды.

Для перекачивания 4 кВт тепловой энергии нам понадобится примерно 1 кВт электроэнергии. Но электроэнергия тоже никуда просто так не пропадет, она превратится в тепловую энергию, т.к. компрессор в процессе работы также нагревается. Итого – затратив 1 кВт электроэнергии, мы получаем 5 кВт тепла.

Какую выгоду даёт установка этого устройства

Евгений Касаткин:

Выгоду от использования тепловых насосов лучше всего демонстрирует следующая таблица.

Теперь мы знаем, как работает тепловой насос. Рассмотрим, какие бывают типы систем.

Выбор конструкции будет зависеть от наличия на вашем участке дополнительных свободных площадей или водоёма.

  • Вертикальная система. Применяется, если на участке нет места для закладки контура труб или отсутствуют незамерзающие зимой водоёмы. Для монтажа теплового насоса бурятся от 3 до 5 скважин, глубиной от 50 до 150 метров.
  • Горизонтальная система. Менее затратна, чем вертикальная система, т.к. отпадает необходимость в бурении дорогих скважин. Контур труб закладывается на небольшой глубине, обычно около 1.5 метров, но требуется довольно приличная площадь участка.
  • Водная система. Если возле участка, не далее чем 100 метров, есть незамерзающий в зимнее время водоём, то закладка контура труб в нём будет наиболее разумным выбором.
Читать еще:  Уход и заточка опасной бритвы

Особенности эксплуатации тепловых насосов

Как и любая инженерная система, отопление и горячее водоснабжение на базе теплового насоса требует очень вдумчивого подхода.

Александр Сагалович:

– Вертикальная и горизонтальная системы обустройства грунтового теплообменника одинаково эффективны. Горизонтальный теплообменник занимает много места, но значительно дешевле вертикального.

Бурение скважин обойдётся дороже, но зато можно сэкономить место на участке.

Для многих это единственное решение, т.к. участок не позволяет разместить горизонтальный теплообменник.

При обустройстве горизонтального грунтового теплообменника понадобится примерно 5 соток земли на каждые 10 кВт мощности. После завершения работ, эту землю можно использовать без ограничений, единственное, на ней нельзя будет строить капитальные строения. Одним из способов использования тепловых насосов в качестве отопительного контура, может стать монтаж системы водяного тёплого пола.

Инвертор – как часть системы источника альтернативной энергии

Как уже говорилось выше, выработанное источником альтернативной энергии электричество накапливается в аккумуляторах. Но что делать дальше с этой энергией, ведь аккумуляторные батареи выдают постоянный ток, непригодный для подключения бытовых электроприборов? На помощь приходит преобразователь тока – инвертор. При помощи данного прибора постоянный ток преобразовывается в переменный.

Об особенностях использования инверторов для создания систем автономного и бесперебойного электропитания, рассказывает главный инженер компании «СибКонтакт» Сергей Лесков:

– Инверторы встраиваются в различные системы по производству альтернативной энергии содержащие аккумулятор, тем самым обеспечивая весь дом электроэнергией с напряжением 220В и частотой 50 Гц. Инверторы с синусоидальной формой выходного напряжения являются обязательной частью установки автономного электропитания, так как к ним можно подключить любое, даже самое чувствительное оборудование.

При создании системы автономного и бесперебойного электропитания инверторы имеют ряд преимуществ по сравнению с дизель и бензогенераторами:

  • Эти элементы системы работают в автономном режиме и не требуют присутствия человека;
  • В режиме холостого хода потребляют минимум электроэнергии;
  • Не требуют специальной вытяжной вентиляции помещения;
  • Не требуют звукоизоляции помещения.

Таким образом, выбор эффективного источника альтернативной энергии для загородного дома, заключается в комплексном подходе к решению множества достаточно сложных задач, требующих знаний, опыта и умелых рук.

Узнать больше об альтернативной энергии в частном доме вы можете из соответствующей ветки форума. В нашей теме раскрывается вопрос использования ветрогенератора и о том, можно ли собрать его своими руками для энергоснабжения альтернативного дома.

Поучаствуйте в обсуждении нескольких вариантов применения тепловых насосов. Ознакомившись с видео на нашем сайте, вы увидите, как геотермальный насос обеспечивает теплом дом в случае отсутствия магистрального газа. А в этом разделе форума ведётся обсуждение инверторов.

Виды альтернативной энергетики. Справка

Альтернативная энергетика – совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии.

Альтернативный источник энергии – способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.

Виды альтернативной энергетики: солнечная энергетика, ветроэнергетика, биомассовая энергетика, волновая энергетика, градиент-температурная энергетика, эффект запоминания формы, приливная энергетика, геотермальная энергия.

Солнечная энергетика – преобразование солнечной энергии в электроэнергию фотоэлектрическим и термодинамическим методами. Для фотоэлектрического метода используются фотоэлектрические преобразователи (ФЭП) с непосредственным преобразованием энергии световых квантов (фотонов) в электроэнергию.

Термодинамические установки, преобразующие энергию солнца вначале в тепло, а затем в механическую и далее в электрическую энергию, содержат «солнечный котел», турбину и генератор. Однако солнечное излучение, падающее на Землю, обладает рядом характерных особенностей: низкой плотностью потока энергии, суточной и сезонной цикличностью, зависимостью от погодных условий. Поэтому изменения тепловых режимов могут вносить серьезные ограничения в работу системы. Подобная система должна иметь аккумулирующее устройство для исключения случайных колебаний режимов эксплуатации или обеспечения необходимого изменения производства энергии во времени. При проектировании солнечных энергетических станций необходимо правильно оценивать метеорологические факторы.

Геотермальная энергетика – способ получения электроэнергии путем преобразования внутреннего тепла Земли (энергии горячих пароводяных источников) в электрическую энергию.

Этот способ получения электроэнергии основан на факте, что температура пород с глубиной растет, и на уровне 2–3 км от поверхности Земли превышает 100°С. Существует несколько схем получения электроэнергии на геотермальной электростанции.

Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы.

Стоимость «топлива» такой электростанции определяется затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом невелика, так как она не имеет топки, котельной установки и дымовой трубы.

К недостаткам геотермальных электроустановок относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы могут содержать отравляющие вещества. Кроме того, для постройки геотермальной электростанции необходимы определенные геологические условия.

Ветроэнергетика – это отрасль энергетики, специализирующаяся на использовании энергии ветра (кинетической энергии воздушных масс в атмосфере).

Ветряная электростанция – установка, преобразующая кинетическую энергию ветра в электрическую энергию. Состоит она из ветродвигателя, генератора электрического тока, автоматического устройства управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания.

Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров; вертикальные роторы и др.

Производство ветряных электростанций очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные ветряные электростанции даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ветряных электростанций вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ветряных электростанций необходимы огромные площади, много больше, чем для других типов электрогенераторов.

Волновая энергетика – способ получения электрической энергии путем преобразования потенциальной энергии волн в кинетическую энергию пульсаций и оформлении пульсаций в однонаправленное усилие, вращающее вал электрогенератора.

По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью. Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. В механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха – до 85 процентов.

Приливная энергетика, как и прочие виды альтернативной энергетики, является возобновляемым источником энергии.

Для выработки электроэнергии электростанции такого типа используют энергию прилива. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор.

Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит.

Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность приливной электростанции зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

Читать еще:  Бокалы на свадьбу в сиреневом цвете своими

Недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым – условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.

Градиент-температурная энергетика. Этот способ добычи энергии основан на разности температур. Он не слишком широко распространен. С его помощью можно вырабатывать достаточно большое количество энергии при умеренной себестоимости производства электроэнергии.

Большинство градиент-температурных электростанций расположено на морском побережье и используют для работы морскую воду. Мировой океан поглощает почти 70% солнечной энергии, падающей на Землю. Перепад температур между холодными водами на глубине в несколько сотен метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20-40 тысяч ТВт, из которых практически может быть использовано лишь 4 ТВт.

Вместе с тем, морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.

Биомассовая энергетика. При гниении биомассы (навоз, умершие организмы, растения) выделяется биогаз с высоким содержанием метана, который и используется для обогрева, выработки электроэнергии и пр.

Существуют предприятия (свинарники и коровники и др.), которые сами обеспечивают себя электроэнергией и теплом за счет того, что имеют несколько больших «чанов», куда сбрасывают большие массы навоза от животных. В этих герметичных баках навоз гниет, а выделившийся газ идет на нужды фермы.

Еще одним преимуществом этого вида энергетики является то, что в результате использования влажного навоза для получения энергии, от навоза остается сухой остаток являющийся прекрасным удобрением для полей.

Также в качестве биотоплива могут быть использованы быстрорастущие водоросли и некоторые виды органических отходов (стебли кукурузы, тростника и пр.).

Эффект запоминания формы – физическое явление, впервые обнаруженное советскими учеными Курдюмовым и Хондросом в 1949 году.

Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. При восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Таким образом, при восстановлении первоначальной формы сплавы вырабатывают значительно количество тепла (энергии).

Основным недостатком эффекта восстановления формы является низкий КПД – всего 5-6 процентов.

Материал подготовлен на основе информации открытых источников

ТОП-10 нестандартных источников альтернативной энергии

Альтернативная энергетика — совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.

1. Летающий ветрогенератор

Buoyant Airborne Turbine (BAT), огромный аэростат с ветряной турбиной, может набирать высоту до 600 метров. На этом уровне скорость ветра значительно выше, чем у поверхности земли, что позволяет удвоить выработку энергии.

2. Волновая электростанция

Oyster Желтый поплавок — надводная часть насоса, который находится на 15-метровой глубине в полукилометре от берега. Используя энергию волн, Oyster («Устрица») перегоняет воду на вполне обычную гидроэлектростанцию, расположенную на суше. Система способна вырабатывать до 800 кВт электроэнергии, обеспечивая светом и теплом до 80 домов.

3. Биотопливо на основе водорослей

Водоросли содержат до 75% натуральных масел, растут очень быстро, не нуждаются в пахотных землях или воде для полива. С одного акра (4047 кв. м.) «морской травы» можно получить от 18 до 27 тысяч литров биотоплива в год. Для сравнения: сахарный тростник при тех же исходных дает лишь 3600 литров биоэтанола.

4. Солнечные батареи в оконных стеклах

Стандартные солнечные батареи преобразуют энергию Солнца в электричество с эффективностью 10−20%, а их эксплуатация довольно затратна. Но недавно ученые из университета Калифорнии разработали прозрачные панели на основе относительно недорогого пластика. Батареи черпают энергию из инфракрасного света и могут заменить обычные оконные стекла.

5. Вулканическое электричество

Принцип работы геотермальной электростанции такой же, как и у теплоэлектростанции, только вместо угля используется тепло земных недр. Для добычи этого вида энергии идеальны районы с высокой вулканической активностью, где магма подходит близко к поверхности.

6. Сферическая солнечная батарея

Даже в облачный день заполненный жидкостью стеклянный шар Betaray работает в четыре раза эффективнее, чем обычная солнечная батарея. И даже в ясную ночь сфера не дремлет, извлекая энергию из лунного света.

7. Вирус М13

Ученым Национальной лаборатории имени Лоуренса в Беркли (Калифорния) удалось модифицировать вирус-бактериофаг М13 так, что он создает электрический заряд при механической деформации материала. Чтобы получить электричество, достаточно нажать на кнопку или провести пальцем по дисплею. Впрочем, пока максимальный заряд, который удалось получить «инфекционным путем», равен возможностям четверти микропальчиковой батарейки.

8. Торий

Торий — радиоактивный металл, похожий на уран, но способный давать в 90 раз больше энергии при распаде. В природе он встречается в 3-4 раза чаще, чем уран, а всего один грамм вещества по количеству выделяемого тепла эквивалентен 7400 галлонам (33640 литрам) бензина. 8 грамм тория хватит, чтобы автомобиль мог ехать более 100 лет или 1,6 млн км без дозаправки. В общем, компания Laser Power Systems объявила о начале работ над ториевым двигателем. Посмотрим-с!

9. Микроволновый двигатель

Как известно, космический корабль получает импульс для взлета за счет выброса и сгорания ракетного топлива. Основы физики попытался перечеркнуть Роджер Шойер. Его двигатель EMDrive (мы о нем писали) не нуждается в горючем, создавая тягу с помощью микроволн, которые отражаются от внутренних стенок герметичного контейнера. Впереди еще долгий путь: силы тяги такого мотора не хватает даже для того, чтобы сбросить со стола монету.

10. Международный экспериментальный термоядерный реактор

Предназначение ITER— воссоздать процессы, происходящие внутри звезд. В противовес расщеплению ядра речь идет о безопасном и безотходном синтезе двух элементов. Получив 50 мегаватт энергии, ITER вернет 500 мегаватт — достаточно, чтобы обеспечить электричеством 130 000 домов. Запуск реактора, базирующегося на юге Франции, произойдет в начале 2030-х, а подключить его к энергетической сети получится не раньше 2040 года.

  • 2823 просмотра

Материалы по теме

А вот ещё:

Зачем колоризируют чёрно-белые фильмы?

Принято считать, что раньше сахар был слаще, трава зеленее, а девушки красивее. Также многие с теплотой вспоминают, как смотрели черно-белое кино с семьей и получали от этого огромное удовольствие. ”Берегись автомобиля”, ”17 мгновений весны”, ”В бой идут одни старики”, ”Высота”… Все эти фильмы были черно-белыми, но все их любили. Сейчас часто можно наткнуться на фильмы тех времен, но они почему-то стали цветными. Этому есть простое объяснение — их раскрасили.

Процесс этот сложнее, чем кажется, но люди продолжают им заниматься. Хотя мне иногда кажется, что они зря это делают. Так теряется вся прелесть жанра. Это как оцифровать грампластинки. Можно спорить или соглашаться со сказанным, но лучше давайте пока просто обсудим способы, которыми раскрашивают фильмы.

Когда начали снимать цветное кино

Вы можете удивиться, но цветное кино начали делать еще на заре кинематографа. Именно делать, а не снимать. В то время и речи не шло о цветных пленках, поэтому раскрашивать кадры приходилось руками и люди это делали. Обрабатывать весь фильм было сложно и долго, поэтому создатели раскрашивали только его части для большей выразительности. Например, пистолетные выстрелы и тому подобное. В итоге, смысла в этом было мало и такой работой постепенно перестали заниматься. Но сам факт не позволяет сказать, что раньше было только черно-белое кино.

В СССР колоризацию (так в кинематографе называется процесс работы с цветом) привез Сергей Эйзенштейн. Он побывал в Париже и увидел несколько лент того времени, которые были раскрашены. Раскраска, правда, была частичной (элементы одежды, здания, узоры). В итоге он загорелся этой идеей и перенял такой метод кинопроизводства.

Читать еще:  Длинные серьги в стиле вамп

Идея покадрового раскрашивания фильмов быстро потеряла популярность, так как была очень сложной. Но многие упорно продолжали это делать и даже заранее закладывали в сценарий сцены, которые должны быть цветными. Интересно, что в разных странах пошли разным путем ”украшения кинопроизведений”. В США долго занимались раскраской фильмов, а в СССР к этой идее быстро остыли и начали переключаться на озвучку готовых лент.

Первый цветной фильм

Первым фильмом, который именно сняли цветным, была лента, созданная фотографом Эдвардом Тренером. При создании фильма кадры последовательно фиксировались на пленку через цветные фильтры — красный, зеленый и синий. Для этого использовалось три разных аппарата. Так же картинка потом и воспроизводилась, через такие же фильтры, воссоздавая оригинальные цвета. Сделал он это уже более 110 лет назад. Правда, фильмом назвать это сложно, так как это просто несколько коротких зарисовок из жизни.

Вдохновили его на это работы знакомого фотографа, который экспериментировал с цветной фотографией и различными фильтрами.

Официально первым цветным фильмом считается картина ”Бекки Шарп”, вышедшая на экраны в 1935 году. Произошло это в США, а режиссерам был Рубен Мамулян. В СССР первой цветной картиной был ”Соловей-Соловушко” в 1936 году.

Когда начали раскрашивать фильмы

Несмотря на разовые работы по колоризации фильмов, массовая ручная раскраска становилась все более бессмысленной. Фильмы становились длиннее, пленки сложнее, а требования к надежности выше. Тем более, в середине века появились уже цветные фильмы и людям хватало зрелища без просмотра старых лент.

Сторонники колоризации все равно были, но они уже хотели автоматизировать процесс. Все чаще думали, как заставить компьютер делать старые фильмы цветными и в 80-е годы наконец-то дошли до этого. Многие ленты, которые мы привыкли видеть цветными, изначально были черно-белыми. Например, кадры высадки астронавтов NASA на Луну.

Как и сейчас, сразу появилось много сторонников и противников колоризации. И с той, и с другой стороны хватало влиятельных людей из мира киноиндустрии, а главным примиряющим аргументом были привычки. То есть, если человек не видел, как кино выглядело до того, как стало цветным, он не имел претензий. С этим соглашались все.

Главным же техническим моментом, который не нравился людям, был очень плохой переход цветов. Особенно на волосах и других мелких элементах. Из-за этого цветные картины выглядели очень неестественно.

Как раскрашивают старые фильмы

Ни для кого не секрет, что для того, чтобы раскрасить старый фильм, надо знать, какого цвета изначально были объекты в кадре. Для этого проводится долгая подготовительная работа. Команда колористов ездит по студиям, изучает реквизит, рассматривает цветные фотографии со съемок и даже опрашивает очевидцев процесса.

Прежде чем понять, какого цвета были объекты в кадре их надо найти на складах реквизита.

В итоге, специалисты понимают, как должен выглядеть тот или иной объект, но раскрашивать каждый кадр вручную не очень логично, и на помощь приходит компьютер. То ли еще будет,когда заработают квавнтовые компьютеры.

В начале берется несколько ключевых кадров (более правильно их называть ”кадрами цветового решения”). В них есть все основные элементы, которые надо раскрасить. Понятно, что соседние кадры будут мало отличаться и они могут раскрашиваться по аналогии. Это уже можно доверить компьютеру.

Сначала картина оцифровывается, чтобы с ней мог работать компьютер. Обычно старые пленки находятся в очень плохом состоянии и проводятся работы по восстановлению материала. Потом берется несколько сотен ключевых кадров и начинается процесс. Например, для колорирования фильма ”17 мгновений весны” было использовано полторы тысячи ключевых кадров, каждый из которых раскрасили вручную.

После того, как работа по колорированию ключевых кадров завершена, все еще раз проверяется. Снова призываются на помощь участники событий и проверяется цвет реквизита из хранилищ киностудий.

Когда все окончательно выверено, в дело вступает компьютер. Он анализирует оттенки серого и то, какие цвета им придали в ручном режиме на ключевых кадрах. Так пиксель за пикселем он подгоняет цвет каждого кадра.

Процесс этот очень долгий и трудоемкий. Проблема в том, что даже после того, как вся ручная работа завершена, недостаточно просто нажать одну кнопку и получить результат. Часто компьютер ошибается и надо вносить новые корректировки и использовать дополнительные ключевые кадры. Так процесс затягивается на несколько месяцев, а иногда даже больше. При этом занимается колорированием не один человек, а целая студия.

В нашей стране есть две основные студии, которые занимаются такими работами — ”Формула цвета” и ”Крупный план”. Основным заказчиком колоризации как правило выступает Первый канал.

Сколько стоит раскрасить черно-белый фильм

Как вы поняли, процесс очень трудоемкий. Значит, он должен стоить дорого. К сожалению, точные цифры найти сложно, да и не всегда они афишируются. Тем не менее, примерные цифры варьируются в диапазоне от нескольких сотен тысяч долларов до пары миллионов за полуторачасовой фильм. Точная цена зависит от продолжительности, качества работы и того, насколько трудно добыть исходники цвета.

По понятным причинам со временем популярность колоризации фильмов падает. Учитывая, что почти все фильмы из золотой коллекции уже раскрашены, платить такие деньги мало кто захочет. Особенно на фоне того, сколько выходит новых фильмов.

Несмотря на стоимость и сложность, энтузиасты своего дела все равно активно работают над новыми лентами. Особенно в нашей стране, так как мы позже начали раскрашивать фильмы. Они считают, что только так можно привить любовь молодежи к классике кинематографа, в которой действительно есть шедевры, не сравнимые ни с какими ”Мстителями”.

Учитывая то, как технологии шагнули вперед, сейчас можно действительно сделать очень качественное колорирование. Например, в 80-е годы прошлого века для анализа использовалось только 6 градаций серого, теперь их 1200. Количество итоговых цветов выросло с 16 до 1 000 000. Цифры говорят сами за себя. Для меня, если честно, загадка в том, как 40 лет назад вообще умудрялись проводить такие работы на компьютере. Особенно, учитывая мощности того времени.

Основных сложностей в процессе колорирования несколько. Первой из них являются оттенки лица. 30-35 лет назад цвета лиц были, как у трупов, а сейчас они наоборот слишком румяные. Золотую середину так и не нашли.

Во время съемок черно-белого кино не было таких технологий, как сейчас. В итоге грим был так себе, декорации сделаны из фанеры, а костюмы часто оставляли желать лучшего. Просто на кадрах тех лет (с тем качеством съемки) этого было не видно. Сейчас с обработкой это вылезает и приходится дополнительно ”чистить брак”.

Как люди относятся к раскрашиванию фильмов

Признаюсь честно, я не очень хорошо отношусь к колорированию фильмов. Мне кажется, что некоторые ленты лучше не трогать. Многие режиссёры придерживаются того же мнения. У тех, кто сейчас жив, спрашивают их мнение, а тех, кого уже нет, спросить нельзя. Вместо этого опираются на их изначальное мнение. Например, многие режиссеры в те времена, когда была возможна и цветная съемка, и черно-белая сознательно выбирали второй вариант. Они считали, что мозг додумает куда более яркие цвета, чем их покажет оператор. Соответственно в этом ключе писались и сценарии.

Например, был случай, когда дочь знаменитого Леонида Быкова, которого уже нет с нами, обратилась в суд, утверждая, что фильм ”В бой идут одни старики” изначально задумывался, как черно-белый.

Массовая общественность тоже так и не может определиться со своим отношением к колорированию. Правда, большинство сходится во мнении, что раскрашивать надо только комедии. Драматические картины должны сохранять свой драматизм, большая часть которого кроется именно в цветовой гамме и возможности каждого человека решить самому, какой он видит сцену.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector